首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Aerobic oxidation of the Mn(II) complex [Mn(Papy3)(H2O)](ClO4) (1, PaPy3- is the anion of the designed ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) in acetonitrile affords the (mu-oxo)dimanganese(III) complex [(Mn(PaPy3))2(mu-O)](ClO4)2 (3) in high yield. The unsupported single oxo bridge between the two high-spin Mn(III) centers in 3 is readily cleaved upon addition of proton sources such as phenol, acetic acid, and benzoic acid, and complexes of the type [Mn(PaPy3)(L)](ClO4) (5, L = PhO-; 6, L = AcO-; 7, L = BzO-) are formed. The basicity of the bridge is evident by the fact that simple addition of methanol to a solution of 3 in acetonitrile affords the methoxide complex [Mn(PaPy3)(OMe)](ClO4) (4). The structures of 3-5 and 7 have been determined. Passage of NO through a solution of 3 in acetonitrile produces the [Mn-NO]6 nitrosyl [Mn(PaPy3)(NO)](ClO4) (2) via reductive nitrosylation. Complexes 4-7 also afford the [Mn-NO]6 nitrosyl 2 upon reaction with NO. In the latter case, the anionic O-based ligands (such as MeO- and PhO-) act as built-in bases and promote reductive nitrosylation of the Mn(III) complexes.  相似文献   

2.
Two new manganese complexes derived from the pentadentate ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-quinoline-2-carboxamide, PaPy2QH, where H is dissociable proton), namely, [Mn(PaPy2Q)(NO)]ClO4 (2) and [Mn(PaPy2Q)(OH)]ClO4 (3), have been synthesized and structurally characterized. The Mn(III) complex [Mn(PaPy2Q)(OH)]ClO4 (3), though insensitive to dioxygen, reacts with nitric oxide (NO) to afford the nitrosyl complex [Mn(PaPy2Q)(NO)]ClO4 (2) via reductive nitrosylation. This diamagnetic {Mn-NO}6 nitrosyl exhibits nuNO at 1725 cm-1 and is highly soluble in water, with lambdamax at 500 and 670 nm. Exposure of solutions of 2 to near-infrared (NIR) light (810 nm, 4 mW) results in bleaching of the maroon solution and detection of free NO by an NO-sensitive electrode. The quantum yield of 2 (Phi = 0.694 +/- 0.010, lambdairr = 550 nm, H2O) is much enhanced over the first generation {Mn-NO}6 nitrosyl derived from analogous polypyridine ligand, namely, [Mn(PaPy3)(NO)]ClO4 (1, Phi = 0.385 +/- 0.010, lambdairr = 550 nm, H2O), reported by this group in a previous account. Although quite active in the visible range (500-600 nm), 1 exhibits very little photoactivity under NIR light. Both 1 and 2 have been incorporated into sol-gel (SG) matrices to obtain nitrosyl-polymer composites 1.SG and 2.SG. The NO-donating capacities of the polyurethane-coated hybrid materials 1.HM and 2.HM have been determined. 2.HM has been used to transfer NO to reduced myoglobin with 780 nm light. The various strategies for synthesizing photosensitive metal nitrosyls have been discussed to establish the merits of the present approach. The results of the present study confirm that proper ligand design is a very effective way to isolate photoactive manganese nitrosyls that could be used to deliver NO to biological targets under the control of NIR light.  相似文献   

3.
An Fe(II) carbonyl complex [(PaPy3)Fe(CO)](ClO4) (1) of the pentadentate ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy3H, H is the dissociable amide proton) has been synthesized and structurally characterized. This Fe(II) carbonyl exhibits its nu(CO) at 1972 cm(-1), and its 1H NMR spectrum in degassed CD3CN confirms its S = 0 ground state. The bound CO in 1 is not photolabile. Reaction of 1 with an equimolar amount of NO results in the formation of the {Fe-NO}7 nitrosyl [(PaPy3)Fe(NO)](ClO4) (2), while excess NO affords the iron(III) nitro complex [(PaPy3)Fe(NO2)](ClO4) (5). In the presence of [Fe(Cp)2]+ and excess NO, 1 forms the {Fe-NO}6 nitrosyl [(PaPy3)Fe(NO)](ClO4)2 (3). Complex 1 also reacts with dioxygen to afford the iron(III) mu-oxo species [{(PaPy3)Fe}2O](ClO4)2 (4). Comparison of the metric and spectral parameters of 1 with those of the previously reported {Fe-NO}6,7 nitrosyls 3 and 2 provides insight into the electronic distributions in the Fe(II)-CO, Fe(II)-NO, and Fe(II)-NO+ bonds in the isostructural series of complexes 1-3 derived from a non-heme polypyridine ligand with one carboxamide group.  相似文献   

4.
The iron nitrosyl [(PaPy2Q)Fe(NO)](ClO4)2 (2), derived from the quinoline-based ligand PaPy2QH (N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-quinoline-2-carboxamide, where H is dissociable proton) has been characterized by spectroscopy and X-ray diffraction techniques. The 1H NMR spectrum (S = 0 ground state) and v(NO) value of 1885 cm(-1) indicate that 2 is a [Fe-NO]6 nitrosyl. Although 2 is stable in the dark, exposure of an acetonitrile solution of 2 (lambdamax = 510 nm) to light in the visible range causes rapid release of NO and formation of the solvato species [(PaPy2Q)Fe(MeCN)](ClO4)2 (6). Quantum yield (Phi) measurements indicate that 2 is a more efficient NO donor (Phi = 0.258) than [(PaPy3)Fe(NO)](ClO4)2 (1, Phi = 0.185), a complex derived from a similar but pyridine-based ligand. Interestingly, when the photoproduct 6 is exposed to water or a small amount of base, the triply bridged diiron(III) species [(PaPy2Q)FeOFe(PaPy2Q)](ClO4)2 (3) forms in good yield. This species can be independently synthesized from aerobic oxidation of the Fe(II) species [(PaPy2Q)Fe(MeCN)](ClO4) in acetonitrile. The structure of 3 reveals a unique Fe(III)-O-Fe(III) link supported by two (eta2,mu2)mu-NCO bridges derived from the carboxamido groups of the two (PaPy2Q)Fe(III) moieties.  相似文献   

5.
The Mn-nitrosyl complexes [Mn(PaPy(3))(NO)](ClO(4)) (1; PaPy(3)(-) = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) and [Mn(PaPy(2)Q)(NO)](ClO(4)) (2, PaPy(2)Q(-) = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-quinoline-2-carboxamide) show a remarkable photolability of the NO ligand upon irradiation of the complexes with UV-vis-NIR light [Eroy-Reveles, A. A.; Leung, Y.; Beavers, C. M.; Olmstead, M. M.; Mascharak, P. K. J. Am. Chem. Soc. 2008, 130, 4447]. Here we report detailed spectroscopic and theoretical studies on complexes 1 and 2 that provide key insight into the mechanism of NO photolabilization in these compounds. IR- and FT-Raman spectroscopy show N-O and Mn-NO stretching frequencies in the 1720-1750 and 630-650 cm(-1) range, respectively, for these Mn-nitrosyls. The latter value for ν(Mn-NO) is one of the highest transition-metal-NO stretching frequencies reported to this date, indicating that the Mn-NO bond is very strong in these complexes. The electronic structure of 1 and 2 is best described as Mn(I)-NO(+), where the Mn(I) center is in the diamagnetic low-spin state and the NO(+) ligand forms two very strong π backbonds with the d(xz) and d(yz) orbitals of the metal. This explains the very strong Mn-NO bonds observed in these complexes, which even supersede the strengths of the Fe- and Ru-NO bonds in analogous (isoelectronic) Fe/Ru(II)-NO(+) complexes. Using time-dependent density functional theory (TD-DFT) calculations, we were able to assign the electronic spectra of 1 and 2, and to gain key insight into the mechanism of NO photorelease in these complexes. Upon irradiation in the UV region, NO is released because of the direct excitation of d(π)_π* → π*_d(π) charge transfer (CT) states (direct mechanism), which is similar to analogous NO adducts of Ru(III) and Fe(III) complexes. These are transitions from the Mn-NO bonding (d(π)_π*) into the Mn-NO antibonding (π*_d(π)) orbitals within the Mn-NO π backbond. Since these transitions lead to the population of Mn-NO antibonding orbitals, they promote the photorelease of NO. In the case of 1 and 2, further transitions with distinct d(π)_π* → π*_d(π) CT character are observed in the 450-500 nm spectral range, again promoting photorelease of NO. This is confirmed by resonance Raman spectroscopy, showing strong resonance enhancement of the Mn-NO stretch at 450-500 nm excitation. The extraordinary photolability of the Mn-nitrosyls upon irradiation in the vis-NIR region is due to the presence of low-lying d(xy) → π*_d(π) singlet and triplet excited states. These have zero oscillator strengths, but can be populated by initial excitation into d(xy) → L(Py/Q_π*) CT transitions between Mn and the coligand, followed by interconversion into the d(xy) → π*_d(π) singlet excited states. These show strong spin-orbit coupling with the analogous d(xy) → π*_d(π) triplet excited states, which promotes intersystem crossing. TD-DFT shows that the d(xy) → π*_d(π) triplet excited states are indeed found at very low energy. These states are strongly Mn-NO antibonding in nature, and hence, promote dissociation of the NO ligand (indirect mechanism). The Mn-nitrosyls therefore show the long sought-after potential for easy tunability of the NO photorelease properties by simple changes in the coligand.  相似文献   

6.
7.
Three iron complexes of a pentadentate ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy(3)H, H is the dissociable amide proton) have been synthesized. All three species, namely, two nitrosyls [(PaPy(3))Fe(NO)](ClO(4))(2) (2) and [(PaPy(3))Fe(NO)](ClO(4)) (3) and one nitro complex [(PaPy(3))Fe(NO(2))](ClO(4)) (4), have been structurally characterized. These complexes provide the opportunity to compare the structural and spectral properties of a set of isostructural [Fe-NO](6,7) complexes (2 and 3, respectively) and an analogous genuine Fe(III) complex with an "innocent" sixth ligand ([(PaPy(3))Fe(NO(2))](ClO(4)), 4). The most striking difference in the structural features of 2 and 3 is the Fe-N-O angle (Fe-N-O = 173.1(2) degrees in the case of 2 and 141.29(15) degrees in the case of 3). The clean (1)H NMR spectrum of 2 in CD(3)CN reveals its S = 0 ground state and confirms its [Fe-NO](6) configuration. The binding of NO at the non-heme iron center in 2 is completely reversible and the bound NO is photolabile. M?ssbauer data, electron paramagnetic resonance signal at g approximately 2.00, and variable temperature magnetic susceptibility measurements indicate the S = (1)/(2) spin state of the [Fe-NO](7) complex 3. Analysis of the spectroscopic data suggests Fe(II)-NO(+) and Fe(II)-NO(*) formulations for 2 and 3, respectively. The bound NO in 3 does not show any photolability. However, in MeCN solution, it reacts rapidly with dioxygen to afford the nitro complex 4, which has also been synthesized independently from [(PaPy(3))Fe(MeCN)](2+) and NO(2)(-). Nucleophilic attack of hydroxide ion to the N atom of the NO ligand in 2 in MeCN in the dark gives rise to 4 in high yield.  相似文献   

8.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

9.
Cationic nitrile complexes and neutral halide and cyanide complexes, with the general formula [MnL1L2(NO)(eta-C5H4Me)]z, undergo one-electron oxidation at a Pt electrode in CH2Cl2. Linear plots of oxidation potential, Eo', vs. nu(NO) or the Lever parameters, EL, for L1 and L2, allow Eo' to be estimated for unknown analogues. In the presence of TlPF6, [MnIL'(NO)(eta-C5H4Me)] reacts with [Mn(CN)L(NO)(eta-C5H4Me)] to give [(eta5-C5H4Me)(ON)LMn(mu-CN)MnL'(NO)(eta5-C5H4Me)][PF6] which undergoes two reversible one-electron oxidations; DeltaE, the difference between the potentials for the two processes, differs significantly for stable cyanide-bridged linkage isomers. Novel pentametallic complexes such as [Mn[(mu-NC)Mn(CNBut)(NO)(eta5-C5H4Me)]4(OEt2)][PF6]2 and [Mn[(mu-NC)Mn(CNXyl)(NO)(eta5-C5H4Me)]4(NO3-O,O')][PF6], containing a trigonal bipyramidal and a distorted octahedral Mn(II) centre, respectively, result either from slow decomposition of the binuclear cyanide-bridged species or from the reaction of anhydrous MnI2 with four equivalents of [Mn(CN)L(NO)(eta5-C5H4Me)] in the presence of TlPF6.  相似文献   

10.
As part of our search for photoactive ruthenium nitrosyls, a set of {RuNO}6 nitrosyls has been synthesized and structurally characterized. In this set, the first nitrosyl [(SBPy3)Ru(NO)](BF4)3 (1) is derived from a polypyridine Schiff base ligand SBPy3, while the remaining three nitrosyls are derived from analogous polypyridine ligands containing either one ([(PaPy3)Ru(NO)](BF4)2 (2)) or two ([(Py3P)Ru(NO)]BF4 (3) and [(Py3P)Ru(NO)(Cl)] (4)) carboxamide group(s). The coordination structures of 1 and 2 are very similar except that in 2, a carboxamido nitrogen is coordinated to the ruthenium center in place of an imine nitrogen in case of 1. In 3 and 4, the ruthenium center is coordinated to two carboxamido nitrogens in the equatorial plane and the bound NO is trans to a pyridine nitrogen (in 3) and chloride (in 4), respectively. Complexes 1-3 contain N6 donor set, and the NO stretching frequencies (nuNO) correlate well with the N-O bond distances. All four diamagnetic {RuNO}(6) nitrosyls are photoactive and release NO rapidly upon illumination with low-intensity (5-10 mW) UV light. Interestingly, photolysis of 1 generates the diamagnetic Ru(II) photoproduct [(SBPy3)Ru(MeCN)](2+) while 2-4 afford paramagnetic Ru(III) species in MeCN solution. The quantum yield values of NO release under UV illumination (lambda(max) = 302 nm) lie in the range 0.06-0.17. Complexes 3 and 4 also exhibit considerable photoactivity under visible light. The efficiency of NO release increases in the order 2 < 3 < 4, indicating that photorelease of NO is facilitated by (a) the increase in the number of coordinated carboxamido nitrogen(s) and (b) the presence of negatively charged ligands (like chloride) trans to the bound NO.  相似文献   

11.
The synthesis, structures and magnetic properties of two hexanuclear Mn(6) clusters are reported: Mn(6)(mu(4)-O)(2)(dapdo)(2)(dapdoH)(4)(mu(2)-OH)(2)](ClO(4))(2).6MeCN (.6MeCN) and [Mn(6)(mu(4)-O)(2)(dapdo)(2)(dapdoH)(4)(mu(2)-OCH(3))(2)](ClO(4))(2).2Et(2)O (.2Et(2)O) [dapdo(2-) is the dianion of 2,6-diacetylpyridine dioxime and dapdoH(-) is the monoanion of the aforesaid dioxime ligand]. Both complexes are mixed-valent with two Mn(II) and four Mn(III) atoms disposed in an edge-sharing bitetrahedral core. Both complexes and display the same [Mn(III)(4)Mn(II)(2)(mu(4)-O)(2)(mu(2)-OR)(2)](10+) core in which R = H for and R = Me for . The [Mn(III)(4)Mn(II)(2)] core is rather uncommon compared to the reported [Mn(III)(2)Mn(II)(4)] core in the literature. DC magnetic susceptibility measurements on and reveal the presence of competing exchange interactions resulting in an S(t) = 5 ground spin state. The magnetic behavior of the compounds indicates antiferromagnetic coupling between the manganese(iii) centers, whereas the coupling between the manganese(iii) and manganese(ii) is weakly antiferromagnetic or ferromagnetic depending on the bridging environments. Finally the interaction between the manganese(ii) centers from the two fused tetrahedra is weakly ferromagnetic in nature stabilizing S(t) = 5 ground spin state in compounds and .  相似文献   

12.
A polyurethane-coated sol-gel material containing the photoactive Mn nitrosyl [Mn(PaPy3)(NO)]ClO4 rapidly releases NO with high quantum efficiency when exposed to visible light of low intensity. This rigid and strongly colored hybrid material is a convenient point source of NO that can only be triggered with light. Successful delivery of NO to biological targets, such as proteins, by this material has also been demonstrated.  相似文献   

13.
Lin CH  Chen CG  Tsai ML  Lee GH  Liaw WF 《Inorganic chemistry》2008,47(23):11435-11443
The reaction of MnBr(2) and [PPN](2)[S,S-C(6)H(3)-R] (1:2 molar ratio) in THF yielded [(THF)Mn(S,S-C(6)H(3)-R)(2)](-) [R = H (1a), Me (1b); THF = tetrahydrofuran]. Formation of the dimeric [Mn(S,S-C(6)H(3)-R)(2)](2)(2-) [R = H (2a), Me (2b)] was presumed to compensate for the electron-deficient Mn(III) core via two thiolate bridges upon dissolution of complexes 1a and 1b in CH(2)Cl(2). Complex 2a displays antiferromagnetic coupling interaction between two Mn(III) centers (J = -52 cm(-1)), with the effective magnetic moment (mu(eff)) increasing from 0.85 mu(B) at 2.0 K to 4.86 mu(B) at 300 K. The dianionic manganese(II) thiolate complexes [Mn(S,S-C(6)H(3)-R)(2)](2-) [R = H (3a), Me (3b)] were isolated upon the addition of [BH(4)](-) into complexes 1a and 1b or complexes 2a and 2b, respectively. The anionic mononuclear {Mn(NO)}(5) thiolatonitrosylmanganese complexes [(NO)Mn(S,S-C(6)H(3)-R)(2)](-) [R = H (4a), Me (4b)] were obtained from the reaction of NO(g) with the anionic complexes 1a and 1b, respectively, and the subsequent reduction of complexes 4a and 4b yielded the mononuclear {Mn(NO)}(6) [(NO)Mn(S,S-C(6)H(3)-R)(2)](2-) [R = H (5a), Me (5b)]. X-ray structural data, magnetic susceptibility measurement, and magnetic fitting results imply that the electronic structure of complex 4a is best described as a resonance hybrid of [(L)(L)Mn(III)(NO(*))](-) and [(L)(L(*))Mn(III)(NO(-))](-) (L = 1,2-benzenedithiolate) electronic arrangements in a square-pyramidal ligand field. The lower IR v(NO) stretching frequency of complex 5a, compared to that of complex 4a (shifting from 1729 cm(-1) in 4a to 1651 cm(-1) in 5a), supports that one-electron reduction occurs in the {(L)(L(*))Mn(III)} core upon reduction of complex 4a.  相似文献   

14.
15.
We report the synthesis of a series of mixed valence Mn(II/IV) tetranuclear clusters [Mn(II)(2)Mn(IV)(2)O(2)(heed)(2)(EtOH)(6)Br(2)]Br(2) (), [Mn(II)(2)Mn(IV)(2)O(2)(heed)(2)(H(2)O)(2)Cl(4)].2EtOH.H(2)O (.2EtOH.H(2)O), [Mn(II)(2)Mn(IV)(2)O(2)(heed)(2)(heedH(2))(2)](ClO(4))(4) (), [Mn(II)(2)Mn(IV)(2)O(2)(heed)(2)(MeCN)(2)(H(2)O)(2)(bpy)(2)](ClO(4))(4) () and [Mn(II)(2)Mn(IV)(2)O(2)(heed)(2)(bpy)(2)Br(4)].2MeOH (.2MeOH). Clusters are constructed from the tripodal ligand N,N-bis(2-hydroxyethyl)ethylene diamine (heedH(2)) and represent rare examples of tetranuclear Mn clusters possessing the linear trans zig-zag topology, being the first Mn(II/IV) mixed-valent clusters of this type. The molecular clusters can then be used as building blocks in tandem with the (linear) linker dicyanamide ([N(CN)(2)](-), dca(-)) for the formation of a novel extended network {[Mn(II)(2)Mn(IV)(2)O(2)(heed)(2)(H(2)O)(2)(MeOH)(2)(dca)(2)]Br(2)}(n) (), which exhibits a rare form of the 2D herring bone topology.  相似文献   

16.
Ruthenium-terpyridine complexes incorporating a 2,2'-dipyridylamine ancillary ligand [Ru(II)(trpy)(L)(X)](ClO(4))(n) [trpy = 2,2':6',2' '-terpyridine; L = 2,2'-dipyridylamine; and X = Cl(-), n = 1 (1); X = H(2)O, n = 2 (2); X = NO(2)(-), n = 1 (3); X = NO(+), n = 3 (4)] were synthesized in a stepwise manner starting from Ru(III)(trpy)(Cl)(3). The single-crystal X-ray structures of all of the four members (1-4) were determined. The Ru(III)/Ru(II) couple of 1 and 3 appeared at 0.64 and 0.88 V versus the saturated calomel electrode in acetonitrile. The aqua complex 2 exhibited a metal-based couple at 0.48 V in water, and the potential increased linearly with the decrease in pH. The electron-proton content of the redox process over the pH range of 6.8-1.0 was calculated to be a 2e(-)/1H(+) process. However, the chemical oxidation of 2 by an aq Ce(IV) solution in 1 N H(2)SO(4) led to the direct formation of corresponding oxo species [Ru(IV)(trpy)(L)(O)](2+) via the concerted 2e(-)/2H(+) oxidation process. The two successive reductions of the coordinated nitrosyl function of 4 appeared at +0.34 and -0.34 V corresponding to Ru(II)-NO(+) --> Ru(II)-NO* and Ru(II)-NO* --> Ru(II)-NO(-), respectively. The one-electron-reduced Ru(II)-NO* species exhibited a free-radical electron paramagnetic resonance signal at g = 1.990 with nitrogen hyperfine structures at 77 K. The NO stretching frequency of 4 (1945 cm(-1)) was shifted to 1830 cm(-1) in the case of [Ru(II)(trpy)(L)(NO*)](2+). In aqueous solution, the nitrosyl complex 4 slowly transformed to the nitro derivative 3 with the pseudo-first-order rate constant of k(298)/s(-1) = 1.7 x 10(-4). The chloro complex 1 exhibited a dual luminescence at 650 and 715 nm with excited-state lifetimes of 6 and 1 micros, respectively.  相似文献   

17.
The ditopic ligand PyPzOAPz (N-[(Z)-amino(pyrazin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid) was synthesized by in situ condensation of methyl imino pyrazine-2-carboxylate with 5-methyl-1-(2-pyridyl) pyrazole-3-carbohydrazide. In this work we have also used two of our earlier ligands PzCAP (5-methyl-N-[(1E)-1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazonic acid) (Dalton Trans., 2009, 8215) and PzOAP (N-[(Z)-amino(pyridin-2-yl)methylidene]-5-methyl-1H-pyrazole-3-carbohydrazonic acid) (Dalton Trans., 2007, 1229). These ligands PzCAP, PzOAP and PyPzOAPz were made to react with Mn(ClO(4))(2)·6H(2)O to produce three pentanuclear Mn(II) clusters [Mn(5)(PzCAP)(6)](ClO(4))(4) (1), [Mn(5)(PzOAP)(6)](ClO(4))(4) (2) and [Mn(5)(PyPzOAPz)(6)](ClO(4))(4) (3). These complexes have been characterized by X-ray structural analyses and variable temperature magnetic susceptibility measurements. All complexes have a pentanuclear core with trigonal bipyramidal arrangement of Mn(II) atoms, where, the axial metal centers have a N(3)O(3) chromophore and the equatorial centers have N(4)O(2) with an octahedral arrangement. These Mn(5)(II) clusters 1, 2 and 3 show the presence of antiferromagnetic coupling within the pentanuclear manganese(II) core (J = -2.95, -3.19 and -3.00 cm(-1) respectively). Density functional theory calculations and continuous shape measurement (CShM) studies have been performed on these complexes to provide a qualitative theoretical interpretation of the antiferromagnetic behaviour shown by them. The pentanuclear Mn(II) cluster (1) on reaction with Cu(NO(3))(2)·6H(2)O in 1:1 mole proportion in CH(3)OH:H(2)O (60?:?40) forms a homoleptic [2 × 2] tetranuclear Cu(4)(II) grid [Cu(4)(PzCAP)(4)(NO(3))(2)](NO(3))(2)·8H(2)O (4). The same Cu(4)(II) grid is also obtained from a direct reaction between the ditopic ligand PzCAP with Cu(NO(3))(2)·6H(2)O in 1:1 mole proportion. This conversion of a cluster to a grid is a novel observation.  相似文献   

18.
New synthesis procedures are described to tetranuclear manganese carboxylate complexes containing the [Mn(4)O(2)](8+) or [Mn(4)O(3)X](6+) (X(-) = MeCO(2)(-), F(-), Cl(-), Br(-), NO(3)(-)) core. These involve acidolysis reactions of [Mn(4)O(3)(O(2)CMe)(4)(dbm)(3)] (1; dbm is the anion of dibenzoylmethane) or [Mn(4)O(2)(O(2)CEt)(6)(dbm)(2)] (8) with HX (X(-) = F(-), Cl(-), Br(-), NO(3)(-)); high-yield routes to 1 and 8 are also described. The X(-) = NO(3)(-) complexes [Mn(4)O(3)(NO(3))(O(2)CR)(3)(R'(2)dbm)(3)] (R = Me, R' = H (6); R = Me, R' = Et (7); R = Et, R' = H (12)) represent the first synthesis of the [Mn(4)O(3)(NO(3))](6+) core, which contains an unusual eta(1):mu(3)-NO(3)(-) group. Treatment of known [Mn(4)O(2)(O(2)CEt)(7)(bpy)(2)](ClO(4)) with HNO(3) gives [Mn(4)O(2)(NO(3))(O(2)CEt)(6)(bpy)(2)](ClO(4)) (15) containing a eta(1):eta(1):mu-NO(3)(-) group bridging the two body Mn(III) ions of the [Mn(4)O(2)](8+) butterfly core. Complex 7 x 4CH(2)Cl(2) crystallizes in space group P2(1)2(1)2(1) with (at -168 degrees C) a = 21.110(3) A, b = 22.183(3) A, c = 15.958(2) A, Z = 4, and V = 7472.4(3) A(3). Complex 15 x (3)/(2)CH(2)Cl(2) crystallizes in space group P2(1)/c with (at -165 degrees C) a = 26.025(4) A, b = 13.488(2) A, c = 32.102(6) A, beta = 97.27(1) degrees, Z = 8, and V = 11178(5) A(3). Complex 7 contains a [Mn(4)(mu(3)-O)(3)(mu(3)-NO(3))](6+) core (3Mn(III), Mn(IV)) as seen for previous [Mn(4)O(3)X](6+) complexes. Complex 15 contains a butterfly [Mn(4)(mu(3)-O)(2)](8+) core. (1)H NMR spectra have been recorded for all complexes reported in this work and the various resonances assigned. All complexes retain their structural integrity on dissolution in chloroform and dichloromethane. Magnetic susceptibility (chi(M)) data were collected on 12 in the 5-300 K range in a 10.0 kG (1 T) field. Fitting of the data to the theoretical chi(M) vs T expression appropriate for a [Mn(4)O(3)X](6+) complex of C(3)(v)() symmetry gave J(34) = -23.9 cm(-)(1), J(33) = 4.9 cm(-)(1), and g = 1.98, where J(34) and J(33) refer to the Mn(III)Mn(IV) and Mn(III)Mn(III) pairwise exchange interactions, respectively. The ground state of the molecule is S = 9/2, as found previously for other [Mn(4)O(3)X](6+) complexes. This was confirmed by magnetization data collected at various fields and temperatures. Fitting of the data gave S = 9/2, D = -0.45 cm(-1), and g = 1.96, where D is the axial zero-field splitting parameter.  相似文献   

19.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

20.
A unique 2:1 cocrystal of mixed Cu(I)/Cu(II) complexes [Cu(I)(H2CPz2)(MeCN)2](ClO4) (1) and [Cu(II)(H2CPz2)2(ClO4)2] (4), a novel ferromagnetic ClO(4-)-bridged bis(mu-hydroxo)dicopper(II) complex, [Cu2(H2CPz2)2(OH)2(ClO4)](ClO4)(CH3CN)(0.5) (5), and a bischelated copper(I) complex, [Cu(H2CPz2)2](ClO4) (2), prepared from a one-pot reaction of [Cu(MeCN)4](ClO4) and H2CPz2, are described. The structures of these complexes have been determined by X-ray crystallographic methods. The Cu(I)-N(acetonitrile) bond distances in complex 1 are nonequivalent (1.907(8) and 2.034(9) A), leading to the dissociation of one MeCN to form a Y-shaped complex, [Cu(I)(H2CPz2)(MeCN)](ClO4) (3), which is oxidized readily in air to form complex 5 with a butterfly Cu2O2 core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号