首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Approach for interpretation of nuclear magnetic resonance (NMR) spectra in magnetic materials is presented, consisting in employing the anisotropy of hyperfine interaction. The anisotropic parts of hyperfine magnetic fields on 57Fe nuclei are calculated ab initio for a model example of lithium ferrite and utilized to assign the experimental NMR spectral lines to iron sites in the crystal structure.  相似文献   

2.
The theory of the radiospectroscopy (nuclear magnetic resonance [NMR] and electron spin resonance [ESR]) line shape for nanomaterials is developed. The consideration was performed in the core and shell models which are, respectively, the nanoparticle regions unperturbed and perturbed by the surface influence. The shift of the resonance frequency by the surface tension was taken into account. The homogeneously broadened line shape was supposed to be Gaussian or Lorentzian. Inhomogeneous broadening of lines via the distribution of nanoparticle sizes was calculated for several forms of the size distribution function. The splitting of radiospectroscopy spectra into two lines decreases with particle sizes, which looks like that in the bulk and on the surface. It was shown to be the characteristic feature of nanomaterial spectra. The changing of these lines’ intensity and width with the change of the distribution function parameters and the particle size decrease was considered. The comparison of the theory with NMR spectra of17O and25Mg observed recently in nanocrystalline MgO is performed. The calculations fit pretty good the observed size dependence of the line shape, intensity and width.  相似文献   

3.
The surface plasmon resonance effects in porous gold (por-Au) films—nanocomposite porous films containing an ensemble of disordered gold nanoparticles—have been investigated by modulation-polarization spectroscopy. Por-Au films have been obtained by pulsed laser deposition (using a direct particle flow from an erosion torch formed by a YAG:Nd3+ laser in argon). The spectral and angular dependences of the polarization difference ρ(λ, θ) of internal-reflection coefficients of s- and p-polarized radiation in the Kretschmann geometry and the spectral dependences of isotropic reflection angles at ρ(θ) = 0 are measured. Two types of surface plasmon resonance are found: one occurs on isolated nanoparticles (dipole and multipole modes), and the other is due to the dipole–dipole interaction of neighboring nanoparticles. The frequency of electron plasma oscillations for the nanoparticle ensemble and the frequencies and decay parameters of resonances are determined. Dispersion relations for the radiative and nonradiative modes are presented. The negative sign of the dispersion branch of nonradiative modes of dipole–dipole interaction is explained by the spatial dispersion of permittivity. The relationships between the formation conditions of the films, their structure, and established resonance parameters (determining the resonant-optical properties of films) are discussed.  相似文献   

4.
Process of monodomain formation in FeBO3 antiferromagnet in the static magnetic field applied in the magnetically easy plane is studied by NMR technique at the temperatures 4.2 and 77 K. It is found that the57Fe NMR signal splits into three absorption lines. Dependence of the intensities and the resonance frequency changes of the “central” and of the “side” signals on the static field amplitude is investigated. It is shown that the observed effects are determined both by layered character of domain structure and weak ferromagnetism of iron borate. Possible utilizations of method (based on the NMR frequency differences of nuclei in different domains in the static magnetic field) for investigation of the domain structure character and the remagnetization dynamics of magnetically ordered materials are discussed.  相似文献   

5.
Absorption spectra of Mössbauer 181Ta1(W) radiation in tantalum have been measured with the source placed in a static magnetic field HO ≈ 3400 Oe with a rf magnetic field resonant with respect to the frequency of the excited state 3 MHz with amplitude of 300 and 360 Oe, a rf field of 4 MHz with an amplitude of 300 Oe and without rf field. The dramatic change of the spectrum in the resonant field of 300 and 360 Oe, consistent with the theoretical prediction, is evidence for the observation of the NMR Mössbauer double resonance.  相似文献   

6.
We present the results of an experimental investigation of a RF splitting of57Fe hyperfine lines in the regime of NMR and Mössbauer double resonance. The experiments have been performed as a function of RF field intensity and static magnetic field magnitude. The intensity of the RF components and the separation between them are extremely sensitive to the frequency and amplitude of the RF magnetic field. The RF splitting of hyperfine lines is inversely proportional to the strength of the static magnetic field.  相似文献   

7.
We report observations of single‐molecule detection of thionine and its dynamic interactions on aggregated gold nanoparticle clusters using surface enhanced Raman scattering (SERS). Spectral intensities were found to be independent of the size of Au nanoparticles studied (from 17 to 80 nm) at thionine concentration below 10−12 M or at single‐molecule concentration levels. Raman line separations and, in particular, spectral fluctuations and blinking were also observed, suggesting temporal changes in single molecular motion and/or arrangements of thionine on Au nanoparticle surfaces. In contrast, by using dispersed Au nanoparticles, only ensemble SERS spectra could be observed at relatively high concentrations (> 10−8 M thionine), and spectral intensities varied with the size of Au nanoparticles. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
主要从实验和理论两个方面,探讨了不同Au颗粒尺寸和不同基质对Au:TiO2和Au:Al2O3复合膜线性和非线性光学性质的影响.用吸收光谱研究了Au颗粒尺寸和基质与Au复合膜表面等离子体共振带之间的关系;用皮秒Z扫描技术研究了共振和非共振情况下(激发光波长分别为532nm和1064nm),Au颗粒尺寸和基质与复合膜三阶非线性极化率的关系.基于表面等离子体共振理论和局域场增强理论对复合膜进行了分析,得到了不同Au颗粒大小和不同基质时Au复合膜的 关键词: 金属纳米颗粒 复合膜 三阶非线性 表面等离子体共振  相似文献   

9.
Nuclear magnetic resonance (NMR) techniques for measuring one-dimensional absorption spectra and two-dimensional exchange spectra of solids with extremely inhomogeneously broadened lines are discussed. Among various “broad-line” solids, quasicrystals represent alloys of metallic elements, the structures of which include “forbidden” symmetry elements. NMR absorption lines of quasicrystals exhibit a strong electric-quadrupole-induced inhomogeneous broadening that originates from the lack of translational periodicity of the otherwise perfectly long-range-ordered quasiperiodic lattice. Recording an NMR spectrum of a quasicrystalline sample requires a magnetic field-sweep technique. The two-dimensional exchange experiment on quasicrystals can be performed on selectively excited portions of the NMR spectrum only. Due to the off-resonance effects in a selective excitation, the use of a simple three-pulse stimulated-echo exchange sequence is preferred. The27Al spectra of the Al-Pd-Mn and Al-Pd-Re families show interesting features like temperature-dependent frequency shifts and exchange effects due to atomic motion.  相似文献   

10.
The results of experimental and theoretical investigation of planar two-dimensional (2D) samples of plasmon structures are presented. The samples represent a 2D lattice of gold nanoparticles embedded in a thin dielectric layer and are studied by atomic force microscopy (AFM) and optical methods. Absorption bands associated with the excitation of various surface plasmon resonances (SPR) are interpreted. It is found that the choice of the mutual orientation of the polarization plane and the edge of the unit cell of the 2D lattice determines the spectral position of the lattice surface plasmon resonance (LSPR) related to the lattice period. It is shown that the interaction of p- and s-polarized light with a 2D lattice of nanoparticles is described by the dipole–dipole interaction between nanoparticles embedded in a medium with effective permittivity. Analysis of the spectra of ellipsometric parameters allows one to determine the amplitude and phase anisotropy of transmission, which is a consequence of the imperfection of the 2D lattice of samples.  相似文献   

11.
57Fe nuclear magnetic resonance (NMR) spectra of hexaferrite BaFe12O19 powder samples prepared by glass crystallization method were measured at 4.2 K and analyzed in comparison to spectra of single crystals. Samples with various mean particle dimensions were tested. NMR spectral lines corresponding to individual iron sublattices showed pronounced frequency shifts of their positions and a significant line broadening compared to single crystals. The significant contribution to the line shifts and line shape had a uniform macroscopic origin giving identical absolute value of shifts and the same line shapes for all measured lines of a particular sample. Estimations of demagnetization fields based on mean particle dimensions reasonably corresponded to the observed frequency shifts for particle mean diameter 67 nm, or had a higher value for a sample with mean diameter of 340 nm, for which a presence of domain walls was detected by NMR. In the spectrum of a sample with the smallest particles (~16 nm), an additional contribution having broader lines and faster spin-spin relaxations was found. It could be assigned to weaker exchange interactions or deviations of magnetic moment directions from the hexagonal axis in a surface layer.  相似文献   

12.
Paramagnetic defects of a new type with a concentration of about 1015 cm?3 are shown to be generated during the plastic deformation of isotope-rich (72%, 76% 29Si) silicon crystals at a temperature of 950°C. The electron paramagnetic resonance (EPR) spectra of these defects are anisotropic and have a significant width (up to 1 kOe). The nonuniform broadening of the EPR lines is caused by the variation of the internal magnetic field in correlated defect clusters. The nuclear magnetic resonance (NMR) spectra of the deformed crystals consist of Pake doublets split by nuclear spin-spin interaction. The broadening of the NMR spectra is caused by nuclear dipole-dipole relaxation.  相似文献   

13.
Qi Lin 《Optik》2011,122(12):1031-1036
We study the optical properties of dimer and septamer aggregates (in forms of being separated or merged) of ultra-small silver nanoparticles (a few nanometers in diameter) by calculating their extinction spectra and optical field distributions using the discrete dipole approximation method. Characteristics of their extinction spectra are identified due to different resonance modes dependent on the incidence states of light. Specifically, as polarization of the incidence light is perpendicular to the center-to-center lines of the nanoparticles, interaction of neighboring nanoparticles is in the “repulsive coupling mode”, which results in blue-shift of the resonance peak with decrease of the nanoparticle interspacing. While, whenever there is a projection of the polarization of incident light on the center-to-center lines of the nanoparticles, the “attractive coupling mode” between the nanoparticles dominates in their resonant interaction, which results in red-shift of the resonance peak with decrease of the nanoparticle interspacing. It is also shown that optical interaction of the ultra-small nanoparticles is only effective when their interspacings are approximately less than 15 nm, and particularly prominent when Coulomb interactions of the electronic charges of plasmons are active within a few nanometers.  相似文献   

14.
The dynamics of the incommensurate modulation of Rb2ZnBr4 is investigated near the transition to the normal high-temperature phase using first-order quadrupole effects in nuclear magnetic resonance (NMR).87Rb NMR spectra and two-dimensional87Rb NMR exchange spectra are reported. All results can be described consistently in terms of a static modulation in the incommensurate phase without any indication for “floating” or large-scale fluctuations of the modulation wave. The spectra taken about 135 K below Ti in the lower incommensurate phase well above the soliton regime show no indication for the existence of a higher-order commensurate modulation in Rb2ZnBr4.  相似文献   

15.
The NMR spectra of57Fe in domains of MFe12O19 (M=Ba, Sr, Pb) were measured by spin echo technique at 4.2 K. The change of the heavy ion causes frequency shifts of lines corresponding to Fe3+ ions in 2b and 4f2 sites while leaving other lines essentially unchanged; the significant role of different Fe3+−M2+ bonding was found. The dipolar broadening of lines in BaFe12O19 caused by random and static displacement of bipyramidal Fe3+ ions from the mirror plane is calculated and the results are compared with the experiment.  相似文献   

16.
Raman spectroscopy can differentiate the spectral fingerprints of many molecules, resulting in potentially high multiplexing capabilities of Raman‐tagged nanoparticles. However, an accurate quantitative unmixing of Raman spectra is challenging because of potential overlaps between Raman peaks from each molecule, as well as slight variations in the location, height, and width of very narrow peaks. If not accounted for properly, even minor fluctuations in the spectra may produce significant error that will ultimately result in poor unmixing accuracy. The objective of our study was to develop and validate a mathematical model of the Raman spectra of nanoparticles to unmix the contributions from each nanoparticle allowing simultaneous quantitation of several nanoparticle concentrations during sample characterization. We developed and evaluated an algorithm for quantitative unmixing of the spectra called narrow peak spectral algorithm (NPSA). Using NPSA, we were able to successfully unmix Raman spectra of up to seven Raman nanoparticles after correcting for spectral variations of 30% intensity and shifts in peak locations of up to 10 cm−1, which is equivalent to 50% of the full width at half maximum (FWHM). We compared the performance of NPSA to the conventional least squares (LS) analysis. Error in the NPSA is approximately 50% lower than in the LS. The error in estimating the relative contributions of each nanoparticle with the use of the NPSA are in the range of 10–16% for equal ratios and 13–19% for unequal ratios for the unmixing of seven composite organic–inorganic nanoparticles (COINs); whereas, the errors from using the traditional LS approach were in the range of 25–38% for equal ratios and 45–68% for unequal ratios. Here, we report for the first time the quantitative unmixing of seven nanoparticles with a maximum root mean square of the percentage error (RMS%) error of less than 20%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The properties of filled skutterudites MFe4Sb12 (M = La, Ca, Na) have been analyzed using the nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) methods. Two lines have been observed on the 139La NMR spectrum of the LaFe4Sb12 compound and a substructure has been revealed in the 121Sb and 123Sb lines in the NQR spectra of LaFe4Sb12 and CaFe4Sb12. The concept of the partial static displacement of guest atoms (M) in LaFe4Sb12 and CaFe4Sb12 has been proposed. The ab initio calculations confirm this assumption as well as give the displacement of a guest atom and indicate the absence of the splitting of the 139La NMR line in the LaFe4Sb12 spectrum.  相似文献   

18.
The photophysical properties of solutions and films with relatively high concentrations of CdSe/ZnS nanoparticles are studied in the presence of the visible laser irradiation in a wide range of power densities. The short-wavelength wing detected in the photoluminescence spectra of the solutions of quantum dots is due to the selective laser excitation of small-size nanoparticles. A comprehensive analysis of the anti-Stokes photoluminescence of the nanoparticles in solutions and films indicates the thermal mechanism of this phenomenon. The dimensional quantization effect, narrow spectra, and a relatively high luminescence yield are retained in the films with a high nanoparticle concentration. The luminescence spectra of the films remain unchanged when the laser flux density increases to 1 × 106 W/cm2. The effect of the laser radiation on the nanoparticle films is studied at the flux densities exceeding the damage threshold (5 × 106–1 × 109 W/cm2).  相似文献   

19.
20.
The transmission/reflection spectra of bilayer structures consisting of thin amorphous and polycrystalline Pb(Zr0.52Ti0.48)O3 ferroelectric films deposited on dielectric substrates of magnesium oxide MgO and sapphire α-Al2O3 were measured in the frequency range of 5–4000 cm?1. Based on these spectra and using the dispersion analysis method, the spectra of complex dielectric permittivity ?*(ν) and dynamic conductivity σ′(ν) of the films were simulated, the electrodynamic parameters of the films were determined, and the dielectric dispersion responsible for the formation of static permittivity was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号