首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Point estimate method (PEM) is convenient for estimating statistical moments. This paper focuses on discussing the existing PEMs and presenting a new PEM for the efficient and accurate estimation of statistical moments. Firstly, a classification method of PEMs is proposed based on the strategy of choosing sigma points. Secondly, the minimum number of sigma points and the error of inverse Nataf transformation are derived corresponding to certain order and dimensionality of PEMs. Then the inequality unscented transformation (IUT) is presented to estimate the statistical moments. The proposed IUT permits the existing of limited errors in the matching of the first several order moments to decrease the number of sigma points, it opens new strategy of PEMs. The proposed method has two advantages. The first advantage is overcoming the growth of the number of sigma points with dimensionality since it parameterizes the number of sigma points and accuracy order. The second advantage is the wide applicability, for it has the ability to handle correlated and asymmetric random input variables and to match cross moments. Numerical and engineering results show the good accuracy and efficiency of the proposed IUT.  相似文献   

2.
Moment-based methods use only statistical moments of random variables for reliability analysis. The cumulative distribution function (CDF) or probability density function (PDF) of a performance function can be constructed from the perspective of the first few statistical moments, and the failure probability can be evaluated accordingly. However, existing moment-based methods may lead to large errors or instability. As such, the present paper focuses on the high order moment method for higher accuracy of reliability estimation by combining the common saddlepoint approximation technique, and an improved high order moment-based saddlepoint approximation (SPA) method for reliability analysis is presented. The approximated cumulant generating function (CGF) and the CDF of the performance function in terms of its first four statistical-moments are constructed. The developed method can be used for reliability evaluation of uncertain structures follow any types of distribution. Several numerical examples are given to demonstrate the efficacy and accuracy of the proposed method. Comparisons of the new method and several existing high order moment methods are also made on the reliability assessment.  相似文献   

3.
High-dimensional reliability analysis is still an open challenge in structural reliability community. To address this problem, a new sampling approach, named the good lattice point method based partially stratified sampling is proposed in the fractional moments-based maximum entropy method. In this approach, the original sample space is first partitioned into several orthogonal low-dimensional sample spaces, say 2 and 1 dimensions. Then, the samples in each low-dimensional sample space are generated by the good lattice point method, which are deterministic points and possess the property of large variance reduction. Finally, the samples in the original space can be obtained by randomly pairing the samples in low-dimensions, which may also significantly reduce the variance in high-dimensional cases. Then, this sampling approach is applied to evaluate the low-order fractional moments in the maximum entropy method with the tradeoff of efficiency and accuracy for high-dimensional reliability problems. In this regard, the probability density function of the performance function involving a large number of random inputs can be derived accordingly, where the reliability can be straightforwardly evaluated by a simple integral over the probability density function. Numerical examples are studied to validate the proposed method, which indicate the proposed method is of accuracy and efficiency for high-dimensional reliability analysis.  相似文献   

4.
This paper proposes a novel single-loop procedure for time-variant reliability analysis based on a Kriging model. A new strategy is presented to decouple the double-loop Kriging model for time-variant reliability analysis, in which the extreme value response in double-loop procedure is replaced by the best value in the current sampled points to avoid the inner optimization loop. Consequently, the extreme value response surface for time-variant reliability analysis can be directly established through a single-loop Kriging surrogate model. To further improve the accuracy of the proposed Kriging model, two methods are provided to adaptively choose a new sample point for updating the model. One method is to apply two commonly used learning functions to select the new sample point that resides as close to the extreme value response surface as possible, and the other is to apply a new learning function to select the new point. Synchronously, the corresponding different stopping criteria are also provided. It is worth nothing that the proposed single-loop Kriging model for time-variant reliability analysis is for a single time-variant performance function. To verify the proposed method, it is applied to four examples, two of which have with random process and others have not. Other popular methods for time-variant reliability analysis including the existing single-loop Kriging model are also used for the comparative analysis and their results testify the effectiveness of the proposed method.  相似文献   

5.
An adaptive trivariate dimension-reduction method is proposed for statistical moments evaluation and reliability analysis in this paper. First, the raw moments of the performance function can be estimated by means of the trivariate dimension-reduction method, where the trivariate, bivariate and univariate Gaussian-weighted integrals are involved. Since the trivariate and bivariate integrals control the efficiency and accuracy, delineating the existence of bivariate and trivariate cross terms is performed, which could significantly reduce the numbers of trivariate and bivariate integrals to be evaluated. When the cross terms exist, the trivariate and bivariate integrals are numerically evaluated directly by the high-order unscented transformation, where the involved free parameters are provided. When the cross terms don’t exist, the trivariate and bivariate integrals can be further decomposed to be the lower-dimensional integrals, where the high-order unscented transformation is again adopted for numerical integrations. In that regard, the first-four central moments can be computed accordingly and the performance function’s probability density function can be reconstructed by fitting the shifted generalized lognormal distribution model based on the first-four central moments. Then, the failure probability can be computed by a one-dimensional integral over the performance function’s probability density function in the failure domain. Three numerical examples, including both the explicit and implicit performance functions, are investigated, to demonstrate the efficacy of the proposed method for both the statistical moments assessment and reliability analysis.  相似文献   

6.
The response surface method (RSM), a simple and effective approximation technique, is widely used for reliability analysis in civil engineering. However, the traditional RSM needs a considerable number of samples and is computationally intensive and time-consuming for practical engineering problems with many variables. To overcome these problems, this study proposes a new approach that samples experimental points based on the difference between the last two trial design points. This new method constructs the response surface using a support vector machine (SVM); the SVM can build complex, nonlinear relations between random variables and approximate the performance function using fewer experimental points. This approach can reduce the number of experimental points and improve the efficiency and accuracy of reliability analysis. The advantages of the proposed method were verified using four examples involving random variables with different distributions and correlation structures. The results show that this approach can obtain the design point and reliability index with fewer experimental points and better accuracy. The proposed method was also employed to assess the reliability of a numerically modeled tunnel. The results indicate that this new method is applicable to practical, complex engineering problems such as rock engineering problems.  相似文献   

7.
A new computational method to evaluate comprehensively the positional accuracy reliability for single coordinate, single point, multipoint and trajectory accuracy of industrial robots is proposed using the sparse grid numerical integration method and the saddlepoint approximation method. A kinematic error model of end-effector is constructed in three coordinate directions using the sparse grid numerical integration method considering uncertain parameters. The first-four order moments and the covariance matrix for three coordinates of the end-effector are calculated by extended Gauss–Hermite integration nodes and corresponding weights. The eigen-decomposition is conducted to transform the interdependent coordinates into independent standard normal variables. An equivalent extreme value distribution of response is applied to assess the reliability of kinematic accuracy. The probability density function and probability of failure for extreme value distribution are then derived through the saddlepoint approximation method. Four examples are given to demonstrate the effectiveness of the proposed method.  相似文献   

8.
This paper proposes a new higher-efficiency interval method for the response bound estimation of nonlinear dynamic systems, whose uncertain parameters are bounded. This proposed method uses sparse regression and Chebyshev polynomials to help the interval analysis applied on the estimation. It is also a non-intrusive method which needs much fewer evaluations of original nonlinear dynamic systems than the other Chebyshev polynomials based interval methods. By using the proposed method, the response bound estimation of nonlinear dynamic systems can be performed more easily, even if the numerical simulation in nonlinear dynamic systems is costly or the number of uncertain parameters is higher than usual. In our approach, the sparse regression method “elastic net” is adopted to improve the sampling efficiency, but with sufficient accuracy. It alleviates the sample size required in coefficient calculation of the Chebyshev inclusion function in the sampling based methods. Moreover, some mature technologies are adopted to further reduce the sample size and to guarantee the accuracy of the estimation. So that the number of sampling, which solves the certain ordinary differential equations (ODEs), can be reduced significantly in the Chebyshev interval method. Three numerical examples are presented to illustrate the efficiency of proposed interval method. In particular, the last two examples are high dimension uncertain problems, which can further exhibit the ability to reduce the computational cost.  相似文献   

9.
This article describes a numerical method based on the boundary integral equation and dual reciprocity method(DRM) for solving the one‐dimensional advection‐diffusion equations. The concept of DRM is used to convert the domain integral to the boundary that leads to an integration free method. The time derivative is approximated by the time‐stepping method. Numerical results are presented for some problems to demonstrate the usefulness and accuracy of the new approach. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

10.
A boundary element method (BEM) for the analysis of two- and three-dimensional uncoupled transient thermo-elastic problems involving time- and space-dependent heat sources is presented. The domain integrals are efficiently treated using the Cartesian transformation and the radial integration methods without considering any internal cells. Similar to the dual reciprocity method (DRM), some internal points without any connectivity are considered; however, in contrast to the DRM, any arbitrary mesh-free interpolation method can be used in the present formulation. There is no need to find any particular solutions and the shape functions in the mesh-free interpolation method can be arbitrary and sufficiently complicated. Unlike the DRM, the generated system of equations contains the unknowns only on the boundary. After finding the primary unknowns on the boundary, the temperature, displacement, and stress components at all internal points can directly be found without solving any system of equations. Three examples with different forms of heat sources are presented to demonstrate the efficiency and accuracy of the proposed method. Although the proposed BEM is mathematically more complicated than domain methods, such as the finite element method (FEM), it is more efficient from a modelling viewpoint since only the surface mesh has to be generated in the presented method.  相似文献   

11.
The key idea of the proposed method is the use of the equivalent variables named as evidence-based fuzzy variables, which are special evidence variables with fuzzy focal elements. On the basis of the equivalent variables, an uncertainty quantification model is established, in which the unified probabilistic information related to the uncertain responses of engineering systems can be computed with the aid of the fuzziness discretization and reconstruction, the belief and plausibility measures analysis, and the interval response analysis. Monte Carlo simulation is presented as a reference method to validate the accuracy of the proposed method. The proposed method then is extended to perform squeal instability analysis involving different types of epistemic uncertainties. To illustrate the feasibility and effectiveness of the proposed method, seven numerical examples of disc brake instability analysis involving different epistemic uncertainties are provided and analyzed. By conducting appropriate comparisons with reference results, the high accuracy and efficiency of the proposed method on quantifying the effects of different epistemic uncertainties on brake instability are demonstrated.  相似文献   

12.
The dual reciprocity method (DRM) is a technique to transform the domain integrals that appear in the boundary element method into equivalent boundary integrals. In this approach the non-linear terms are approximated by an interpolation applied to the non-Newtonian stress tensor for an inelastic fluid. In the present paper we introduce a radial basis function interpolation scheme for the velocity field that satisfies the continuity equation (mass conservative interpolation). The proposed method performs better than the classical interpolation used in the DRM approach to represent such field. The new scheme together with a sub-domain variation of the DRM yields a more accurate solution for inelastic non-Newtonian problems.  相似文献   

13.
《Optimization》2012,61(7):1043-1055
In this article, a new method is proposed for solving a class of structured variational inequalities (SVIs). The proposed method is referred to as the partial inexact proximal alternating direction (piPAD) method. In the method, two subproblems are solved independently. One is handled by an inexact proximal point method and the other is solved directly. This feature is the major difference between the proposed method and some existing alternating direction-like methods. The convergence of the piPAD method is proved. Two examples of the modern convex optimization problem arising from engineering and information sciences, which can be reformulated into the encountered SVIs, are presented to demonstrate the applicability of the piPAD method. Also, some preliminary numerical results are reported to validate the feasibility and efficiency of the piPAD method.  相似文献   

14.
In this work, an effective technique for solving a class of singular two point boundary value problems is proposed. This technique is based on the Adomian decomposition method (ADM) and Green’s function. The technique relies on constructing Green’s function before establishing the recursive scheme for the solution components. In contrast to the existing recursive schemes based on ADM, the proposed recursive scheme avoids solving a sequence of nonlinear algebraic or transcendental equations for the undetermined coefficients. The approximate solution is obtained in the form of series with easily calculable components. For the completeness, the convergence and error analysis of the proposed scheme is supplemented. Moreover, the numerical examples are included to demonstrate the accuracy, applicability, and generality of the proposed scheme. The results reveal that the method is very effective, straightforward, and simple.  相似文献   

15.
To predict or control the response of a complicated numerical model which involves a large number of input variables but is mainly affected by only a part of variables, it is necessary to screening those active variables. This paper proposes a new space-filling sampling strategy, which is used to screening the parameters based on the Morris’ elementary effect method. The beginning points of sampling trajectories are selected by using the maximin principle of Latin Hypercube Sampling method. The remaining points of trajectories are determined by using the one-factor-at-a-time design. Being different from other sampling strategies to determine the sequence of factors randomly in one-factor-at-a-time design, the proposed method formulates the sequence of factors by a deterministic algorithm, which sequentially maximizes the Euclidean distance among sampling trajectories. A new efficient algorithm is proposed to transform the distance maximization problem to a coordinate sorting problem, which saves computational cost much. After the elementary effects are computed using the sampling points, a detailed criterion is presented to select the active factors. Two mathematic examples and an engineering problem are used to validate the proposed sampling method, which demonstrates the priority in computational efficiency, space-filling performance, and screening efficiency.  相似文献   

16.
For the parameter sensitivity estimation with implicit limit state functions in the time-invariant reliability analysis, the common Monte Carlo simulation based approach involves multiple trials for each parameter being varied, which will increase associated computational cost and the cost may become inevitably high especially when many random variables are involved. Another effective approach for this problem is featured as constructing the equivalent limit state function (usually called response surface) and performing the estimation in FORM/SORM. However, as the equivalent limit state function is polynomial in the traditional response surface method, it is not a good approximation especially for some highly non-linear limit state functions. To solve the above two problems, a new method, support vector regression based response surface method, is therefore presented in this paper. The support vector regression algorithm is employed to construct the equivalent limit state function and FORM/SORM is used in the parameter sensitivity estimation, and then two illustrative examples are given. It is shown that the computational cost of the sensitivity estimation can be greatly reduced and the accuracy can be retained, and results of the sensitivity estimation obtained by the proposed method are in satisfactory agreement with those computed by the conventional Monte Carlo methods.  相似文献   

17.
This article describes a new meshless method based on the dual reciprocity method (DRM) for the numerical solution of one‐dimensional stochastic heat and advection–diffusion equations. First, the time derivative is approximated by the time–stepping method to transforming the original stochastic partial differential equations (SPDEs) into elliptic SPDEs. The resulting elliptic SPDEs have been approximated with the new method, which is a combination of radial basis functions (RBFs) method and the DRM method. We have used inverse multiquadrics (IMQ) and generalized IMQ (GIMQ) RBFs, to approximate functions in the presented method. The noise term has been approximated at the source points, at each time step. The developed formulation is verified in two test problems with investigating the convergence and accuracy of numerical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 292–306, 2016  相似文献   

18.
In this paper, a new numerical method is proposed to solve one-dimensional Burgers’ equation using multiquadric (MQ) radial basis function (RBF) for spatial approximation and a second-order compact finite difference scheme for temporal approximation. The numerical results obtained by this way for different Reynolds number have been compared with the existing numerical schemes to show the accuracy and efficiency of the approach. To show the superiority of this meshless method, numerical experiments with non-uniform MQ interpolation node distribution are also performed.  相似文献   

19.
The robustness and efficiency of the first-order reliability method (FORM) are the important issues in the structural reliability analysis. In this paper, a hybrid conjugate search direction with finite-step length is proposed to improve the efficiency and robustness of FORM, namely hybrid conjugate finite-step length (CFSL-H). The conjugate scalar factor in CFSL-H is adaptively updated using two conjugate methods with a dynamic participation factor. The accuracy, efficiency and robustness of the CFSL-H are illustrated through the nonlinear explicit and structural implicit limit state functions with normal and non-normal random variables. The results illustrated that the proposed CFSL-H algorithm is more robust, efficient and accurate than the modified existing FORM algorithms for complex structural problems.  相似文献   

20.
A new auxiliary function method based on the idea which executes a two-stage deterministic search for global optimization is proposed. Specifically, a local minimum of the original function is first obtained, and then a stretching function technique is used to modify the objective function with respect to the obtained local minimum. The transformed function stretches the function values higher than the obtained minimum upward while it keeps the ones with lower values unchanged. Next, an auxiliary function is constructed on the stretched function, which always descends in the region where the function values are higher than the obtained minimum, and it has a stationary point in the lower area. We optimize the auxiliary function and use the found stationary point as the starting point to turn to the first step to restart the search. Repeat the procedure until termination. A theoretical analysis is also made. The main feature of the new method is that it relaxes significantly the requirements for the parameters. Numerical experiments on benchmark functions with different dimensions (up to 50) demonstrate that the new algorithm has a more rapid convergence and a higher success rate, and can find the solutions with higher quality, compared with some other existing similar algorithms, which is consistent with the analysis in theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号