首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dynamic simulations of adhesion and friction in chemical force microscopy   总被引:1,自引:0,他引:1  
A hybrid molecular simulation approach has been applied to investigate dynamic adhesion and friction between a chemical force microscope (CFM) tip and a substrate, both modified by self-assembled monolayers (SAMs) with hydrophobic methyl (CH(3)) or hydrophilic hydroxyl (OH) terminal groups. The method combines a dynamic model for the CFM tip-cantilever system and a molecular dynamics (MD) relaxation technique for SAMs on Au(111) at room temperature. The hybrid simulation method allows one to simulate force-distance curves (or adhesion) and friction loops (or friction coefficient) in the CFM on the experimental time scale for the first time. The simulation results also provide valuable molecular information at the interface that is not accessible in CFM experiments, such as the actual tip position with respect to the cantilever support position, molecular and hydrogen-bonding structures at the interface, and load distributions among different molecular chains (or single-molecule forces). Results show that the adhesion force and friction coefficient for the OH/OH contact pair are much larger than those for the CH(3)/CH(3) pair due to the formation of hydrogen bonds. During the retraction of a CFM tip from a surface, the CFM tip is away from the sample surface slightly while the spring undergoes dramatic elongation in the normal direction before rupture occurs. Single-molecule forces are distributed unevenly at the contact area. Surface energies calculated for functionalized surfaces compare well with those determined by experiments.  相似文献   

2.
Molecular dynamics (MD) simulations were performed to investigate odd-even chain length dependencies in the wetting properties of self-assembled monolayers (SAMs) of n-alkanethiols [CH3(CH2)n-1SH] on gold by water and hexadecane. Experimentally, the contact angle of hexadecane on the SAMs depends on whether n is odd or even, while contact angles for water show no odd-even dependence. Our MD simulations of this system included a microscopic droplet of either 256 water molecules or 60 hexadecane molecules localized on an n-alkanethiolate SAM on gold with either an even or odd chain length. Contact angles calculated for these nanoscopic droplets were consistent with experimentally observed macroscopic trends in wettability, namely, that hexadecane is sensitive to structural differences between odd- and even-chained SAMs while water is not. Structural properties for the SAMs (including features such as chain tilt, chain twist, and terminal methyl group tilt) were calculated during the MD simulations and used to generate IR spectra of these films that compared favorably with experimental spectra. MD simulations of SAMs in contact with slabs of water and hexadecane revealed that the effects of these solvents on the structure of the SAM was restricted to the chain terminus and had no effect on the inner structure of the SAM. The density profiles for water and hexadecane on the SAMs were different in that water displayed a significant depletion in its density at the liquid/SAM interface from its bulk value, while no such depletion occurred for hexadecane. This difference in contact may explain the lack of an odd-even variation in the wetting characteristics of water on these surfaces, because the water molecules are positioned further away from the surface and, therefore, are not sensitive to the structural differences in the average orientations for the terminal methyl groups in odd- and even-chained SAMs. In contrast, the differences in the wetting properties of hexadecane on the odd- and even-chained SAMs may reflect the closer proximity of these molecules to the SAM surface and a resulting greater sensitivity to the differences in the terminal methyl group orientations in the SAMs. SAM-solvent interaction energies were calculated during the MD simulations, yielding interaction energies that differed on the even- and odd-chained surfaces by approximately 10% for hexadecane and negligibly for water, in accord with estimates using experimental wetting results.  相似文献   

3.
The frictional dynamics of fluorine-terminated alkanethiol (S(CH2)8CF3) self-assembled monolayers (SAMs) on gold are studied using molecular dynamics simulations. The simulations treat the interactions between two SAMs on flat surfaces. The structure and frictional behavior are investigated as a function of applied pressure (200 MPa to 1 GPa) for a shear velocity of 2 m/s and compared to methyl-terminated alkanethiol SAMs. The maximum adhesive pressure between the SAMs is 220 MPa for both end groups. In agreement with experiments on the molecular scale, the shear stress and the coefficient of friction for CF3-terminated alkanethiols are larger than for CH3-terminated alkanethiols. The main source for the difference is primarily the tighter packing of the fluorinated terminal group resulting in a higher degree of order. The molecular scale coefficient of friction is correlated with the degree of order among all the systems.  相似文献   

4.
We have examined the adsorption of DNA-wrapped single-walled carbon nanotubes (DNA-SWNTs) on hydrophobic, hydrophilic, and charged surfaces of alkylthiol self-assembled monolayers (SAMs) on gold. Our goal is to understand how DNA-SWNTs interact with surfaces of varying chemical functionality. These samples were characterized using reflection absorption FTIR (RAIRS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. We have found that DNA-SWNTs preferentially adsorb to positively charged amine-terminated SAMs and to bare gold surfaces versus hydrophobic methyl-terminated or negatively charged carboxylic acid-terminated SAMs. Examination of the adsorption on gold of single-strand DNA (ssDNA) of the same sequence used to wrap the SWNTs suggests that the DNA wrapping plays a role in the adsorption behavior of DNA-SWNTs.  相似文献   

5.
The ambition of this study is to analyze the role of interfacial interactions in friction and nanowear of polystyrene, by comparing friction against hydrophobic wafers (methyl‐terminated) and hydrophilic wafers (hydroxyl‐terminated) as a function of sliding velocity and normal force. Friction experiments are performed with a translation tribometer and nanowear investigation is achieved by using atomic force microscopy (AFM) analysis of the wafer surfaces after friction. Experimental results show that the friction coefficients measured on hydrophilic surfaces are always larger than those obtained with hydrophobic surfaces, indicating a relationship between friction and interfacial interactions. Elsewhere, AFM analysis shows that polystyrene transfer appears for a higher normal force in the case of hydrophobic substrates compared to hydrophilic one. However, the corresponding tangential (or friction) force necessary to detect transfer is quite similar for both types of substrates, indicating that the initial wear of polystyrene occurs for a similar threshold interfacial shear. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2449–2454, 2006  相似文献   

6.
In this study, the mixed self-assembled monolayers (SAMs) containing the mixture of long-chain alkanethiol, SH(CH(2))(11)NH(2) and SH(CH(2))(10)SO(3)H, was prepared as a model surface to examine the interaction between the biological environment and artificial surface. The 10% (v/v) NH(4)OH ethanolic solution and DMSO were chosen as the solvents for the preparation of these mixed SAMs and the "solvent effect" was discussed. X-ray photoelectron spectroscopy (XPS) has indicated that -SO(3)H/-NH(2) mixed SAMs formed from 10% (v/v) NH(4)OH ethanolic solution were surface "-SO(3)H poor", while a nearly equivalent amount of surface -SO(3)H functionality was presented on the mixed SAMs formed from DMSO. This has resulted from the different solvation capability between solvent molecules and the alkanethiol. Such solvent effects were also reflected in various surface properties such as surface wettability and surface zeta potential. The mixed SAMs formed from DMSO were more surface hydrophilic and less negatively surface charged than from 10% (v/v) NH(4)OH ethanolic solution. In addition, these mixed SAMs formed from DMSO exhibited the least amount of protein adsorbed as well as a better platelet compatibility than its counterpart from 10% (v/v) NH(4)OH ethanolic solution. These findings indicated that choosing a proper solvent for mixed zwitterionic SAM can greatly affect its surface properties and biocompatibility, such as to form a surface with near neutrality for reducing protein adsorption and subsequent platelet adhesion and activation.  相似文献   

7.
We have measured interactions between hydrophilic and hydrophobic surfaces in an aqueous medium at various pH and ionic strengths as well as in some organic solvents using atomic force microscopy and analyzed them in terms of particle adhesion and detachment from surfaces. In hydrophilic systems the forces observed were found to be well described by DLVO theory at large separation distances. Very long range hydrophobic forces were not observed in hydrophilic-hydrophobic systems. Nevertheless, the jump into contact was found to occur at distances greater that those predicted by just van der Waals attraction. The interaction between two hydrophobic surfaces was dominated by the long-range attraction due to hydrophobic forces. This interaction was found to be sensitive to the type of substrate as well as to the pH and electrolyte concentration. Measured pull-off forces showed poor reproducibility. However, average values showed clear trends and were used to estimate interfacial energies or work of adhesion for all systems studied by means of the Derjaguin approximation. These values were compared to those calculated by the surface tension component theory using the acid-base approach. Good qualitative agreement was obtained, giving support for the usefulness of this approach in estimating interfacial energies between surfaces in liquid media. A comparison of the measured adhesion force with hydrodynamic detachment experiments showed good qualitative agreement. Copyright 2001 Academic Press.  相似文献   

8.
We used chemical force microscopy (CFM) to study adhesive forces between surfaces of epoxy resin and self-assembled monolayers (SAMs) capable of hydrogen bonding to different extents. The influence of the liquid medium in which the experiments were carried out was also examined systematically. The molecular character of the tip, polymer, and liquid all influenced the adhesion. Complementary macroscopic contact angle measurements were used to assist in the quantitative interpretation of the CFM data. A direct correlation between surface free energy and adhesion forces was observed in mixed alcohol-water solvents. An increase in surface energy from 2 to 50 mJ/m(2) resulted in an increase in adhesion from 4-8 nN to 150-300 nN for tips with radii of 50-150 nm. The interfacial surface energy for identical nonpolar surface groups of SAMs was found not to exceed 2 mJ/m(2). An analysis of adhesion data suggests that the solvent was fully excluded from the zone of contact between functional groups on the tip and sample. With a nonpolar SAM, the force of adhesion increased monotonically in mixed solvents of higher water content; whereas, with a polar SAM (one having a hydrogen bonding component), higher water content led to decreased adhesion. The intermolecular force components theory was used for the interpretation of adhesion force measurements in polar solvents. Competition between hydrogen bonding within the solvent and hydrogen bonding of surface groups and the solvent was shown to provide the main contribution to adhesion forces. We demonstrate how the trends in the magnitude of the adhesion forces for chemically heterogeneous systems (solvents and surfaces) measured with CFM can be quantitatively rationalized using the surface tension components approach. For epoxy polymer, inelastic deformations also contributed heavily to measured adhesion forces.  相似文献   

9.
Surface modification using light is one of the most powerful methods for controlling the physical and chemical properties offunctionalized surfaces. In this paper, we report on systems where soft UV irradiation (lambda = 365 nm) converts a "low" activity fluorocarbon to a "high" activity amine-functionalized surface. An amine-functionalized SAM (self-assembled monolayer) is first masked using a tertiary amine catalyzed reaction with an N-hydroxysuccinimidyl carbonyl reagent. This mild, room-temperature reaction introduces a hydrophobic photocleavable nitrobenzyl "protecting group" terminated with a fluorocarbon end-chain. UV irradiation (lambda = 365 nm) of this hydrophobic/fluorocarbon surface cleaves the nitrobenzyl residue, returning the surface to the original hydrophilic/amine-functionalized state. This provides a mild, generic method of producing surfaces with hydrophilic/hydrophobic patterns or patterned with amine functional residues. Two different protecting groups, one terminated with a single and the other with three fluorocarbon end chains, are compared. In the case of the more bulky protecting group, only a small proportion of the amine residues react, but the surface is equally hydrophobic and the amine residues equally well shielded from further reaction. Surfaces are characterized by X-ray photoelectron spectroscopy, ellipsometry, surface potential, and contact angle measurements. Images of the photopatterned SAMs were obtained using scanning electron microscopy.  相似文献   

10.
A study of protein resistance of oligo(ethylene glycol) (OEG), HS(CH2)11(OCH2CH2)nOH (n = 2, 4, and 6), self-assembled monolayers (SAMs) on Au(111) surfaces is presented here. Hydroxyl-terminated OEG-SAMs are chosen to avoid the hydrophobic effect observed with methyl-terminated OEG-SAMs, particularly at high packing densities. The structure of the OEG-SAM surfaces is controlled by adjusting the assembly solvent. These SAMs were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Protein adsorption on these surfaces was investigated by surface plasmon resonance (SPR). OEG-SAMs assembled from mixed ethanol and water solutions show higher packing density on gold than those from pure ethanol solution. For EG2OH- and EG4OH-SAMs, proteins (i.e., fibrinogen and lysozyme) adsorb more on the densely packed SAMs prepared from mixed ethanol and water solutions, while EG6OH-SAMs generally resist protein adsorption regardless of the assembly solvent used.  相似文献   

11.
The penetration resistance of a prototypical model-membrane system (HS-(CH2)11-OH self-assembled monolayer (SAM) on Au(111)) to the tip of an atomic force microscope (AFM) is investigated in the presence of different solvents. The compressibility (i.e., height vs tip load) of the HS-(CH2)11-OH SAM is studied differentially, with respect to a reference structure. The reference consists of hydrophobic alkylthiol molecules (HS-(CH2)17-CH3) embedded as nanosized patches into the hydrophilic SAM by nanografting, an AFM-assisted nanolithography technique. We find that the penetration resistance of the hydrophilic SAM depends on the nature of the solvent and is much higher in the presence of water than in 2-butanol. In contrast, no solvent-dependent effect is observed in the case of hydrophobic SAMs. We argue that the mechanical resistance of the hydroxyl-terminated SAM is a consequence of the structural order of the solvent-SAM interface, as suggested by our molecular dynamics simulations. The simulations show that in the presence of 2-butanol the polar head groups of the HS-(CH2)11-OH SAM, which bind only weakly to the solvent molecules, try to bind to each other, disrupting the local order at the interface. On the contrary, in the presence of water the polar head groups bind preferentially to the solvent that, in turn, mediates the release of the surface strain, leading to a more ordered interface. We suggest that the mechanical stabilization effect induced by water may be responsible for the stability of even more complex, real membrane systems.  相似文献   

12.
The self-assembled monolayers (SAMs) with gradient surface free energies were prepared by surface grafting of a binary mixture of methyl and vinyl terminated trimethoxysilanes on hydrophilic glass slides followed by in situ oxidation of vinyl groups into carboxyl groups. Characterized by contact angles, the SAMs combined with freshly cleaned glass slides bearing hydroxyl groups were used to study the adhesion behavior of marine benthic diatom Nitzschia closterium MMDL533. The attachment densities were much higher on hydrophobic CH3-SAMs and lower on mixed SAMs with surface free energy of 40.1–50.4 mJ/m2. More gregarious adhesion had been found on hydrophobic CH3-SAMs. The percentage removal was in a narrow range of 63–80% on the engineered surfaces and was much lower with a value of 54% on the hydrophilic slides. Our studies have revealed some subtle but interesting differences in attachment and adhesion from the features reported for these benthic species, indicating the possible links to different diatom species.  相似文献   

13.
In this study two different series of mixed-charge self-assembled monolayers (SAMs) prepared with -N(+)(CH(3))(3)-terminated alkanethiol and strong dissociated monovalent -SO(3)H acid-terminated or weaker dissociated divalent -PO(3)H(2) acid-terminated alkanethiol in pure ethanol were characterized. The influence of the acidity of the anionic functionality in the mixed-charge SAMs on the surface characteristics and platelet compatibility was investigated. X-ray photoelectron spectroscopy indicated that a nearly equivalent amount of countercharged terminal groups was noted on the surface of -SO(3)H/-N(+)(CH(3))(3) mixed SAMs, while "-N(+)(CH(3))(3) thiol poor" phenomena were found on -PO(3)H(2)/-N(+)(CH(3))(3) mixed SAMs instead. This was caused by the distinct differences in solvation capability between the acidic anionic functional groups and solvent molecules and/or the interactions among the terminal ends of the thiols. This acidity difference also affected other interfacial properties and the platelet compatibility. The mixed SAMs formed from the mixture of -SO(3)H- and -N(+)(CH(3))(3)-terminated thiols showed higher surface hydrophilicity and exhibited the least amount of platelets adhered, but these two mixed SAMs were all fairly negatively surface charged. The structure of the hydration layer near the surfaces was likely affected by the acidity of the anionic functionality, and this would cause such a distinct behavior in platelet compatibility. It was concluded that the hydrophilic surfaces with nearly equal amounts of surface positively and negatively charged components could exhibit better platelet compatibility. This work demonstrated that the nature of the acidic terminal ends of alkanethiol is also a key factor for preparing mixed-charge SAMs with good platelet compatibility.  相似文献   

14.
The monomolecular organisation of symmetric, chemically modified tetraether lipids caldarchaeol-PO(4) was studied using Langmuir film balance, ellipsometry, and atomic force microscopy (AFM). Solid silicon wafer substrates were modified to hydrophobic, hydrophilic, and amino-silanised surfaces; and Langmuir-Blodgett (LB)-films were transferred onto each. LB-caldarchaeol-PO(4) films were subjected to further rinsing with organic solvent and additional physical treatments, to compare their resistance and stability on chemisorbed (amino-silanised) and physisorbed (hydrophobic and hydrophilic) surfaces. The resistance and stability of these monolayer films was characterized by ellipsometry and AFM, and film thickness was determined using ellipsometry. AFM was also employed to observe surface morphology. Monolayer films on hydrophobic surfaces were found to be more resistant to rinsing with organic solvent and additional physical treatments than monolayer films on either amino-silanised or hydrophilic surfaces. The hydrophobic effect with hydrophobic surfaces appears to support the formation of stronger caldarchaeol-PO(4) films on silicon wafer substrates, with increased resistance and stability.  相似文献   

15.
The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.  相似文献   

16.
Hydrophobic surfaces with adsorbed tri-block copolymers are wetted by oil in spite of the hydrophilic buoy groups of the block copolymer that are present near the surface. The effect of the buoy group length of the adsorbed molecules on the wettability of hydrophobic surfaces is studied by contact angle measurements and by computer modelling.

The computer model predicts an increase in interfacial free energy with increasing buoy group length for equilibrium adsorption of block copolymer from water. Molecules with large buoy groups occupy more lateral space; therefore the “bare” surface gets more exposed and the anchor groups contribute less to the interfacial free energy which thus increases with the buoy group length.

The calculations showed that the variation of the interaction parameter between solvent and buoy group hardly influences the interfacial free energy. In contrast the interaction parameter between solvent and surface influences the interfacial free energy to a large extent because the oil/surface interactions have a lower energetic value as compared to water/surface interactions and therefore the interfacial free energy is lower than in water. The interfacial free energy varies slightly with increasing buoy group length, depending on the value chosen for the solvent/surface interaction parameter.

Advancing and receding contact angles of hexadecane, sunflower oil and hydrolysate (partly hydrolysed sunflower oil) were measured on hydrophobic surfaces. All oil/water contact angles were small, indicating a hydrophobic apolar surface character. It was found that, for oils with a “good” interaction with the surface (hexadecane and sunflower oil), the contact angle has a minimum value at a certain buoy group length. For hydrolysate (less-strong interaction with the surface) the contact angle decreases monotonically with increasing buoy group length. The results for hexadecane, sunflower oil and hydrolysate are in reasonable agreement with the model predictions. The effect of increasing buoy group length is weak; both decreasing and increasing angles are found, depending on the type of oil used.  相似文献   


17.
Model surfaces representative of chromatographic stationary phases were developed by immobilising an homologous series (C2-C18) of n-alkylthiols, mixed monolayers of C4/C18 and thioalkanes with alcohol, carboxylic acid, amino and sulphonic acid terminal groups onto a flat, silver-coated glass surface using self-assembled monolayer (SAM) chemistry. The processes of adsorption and desorption of serum albumins onto the monolayer surfaces was monitored in real-time using surface plasmon resonance (SPR). Alkyl-terminated SAMs all showed a strong adsorption of bovine serum albumin which was largely independent of alkyl chain length, the ratio of mixed C4/C18 SAMs or the solution pH/ionic strength. The adsorption of human serum albumin to carboxylic and amine terminated SAMs was shown to be predominantly via non-electrostatic interactions (hydrophobic or hydrogen bonding). However, sulphonic acid terminated SAMs showed almost exclusively electrostatic interactions with human serum albumin. This preliminary work using self-assembled monolayer chemistry confirms the usefulness of well characterised SAMs surfaces for investigating protein adsorption and desorption onto/from model chromatography surfaces and gives some guidance for selecting appropriate functionalities to develop better surfaces for chromatography and electrophoresis.  相似文献   

18.
采用紫外光固定化法, 对组织培养用聚苯乙烯板进行半乳糖糖化温敏修饰. 通过红外光谱(ATR-FTIR)和X射线光电子能谱(XPS)对改性表面的化学组成及结构进行了表征, 并采用原子力显微镜(AFM)观察了改性表面形貌, 发现改性表面比未经修饰表面粗糙度增加. 静态接触角测试结果表明, 改性表面具有良好的温度响应性. 对人肝肿瘤(HepG-2)细胞在改性表面的吸/脱附行为的研究结果表明, HepG-2细胞在半乳糖糖化温敏表面表现出比在未经修饰聚苯乙烯细胞培养板表面更好的生长趋势, 当环境温度降低时, 细胞发生自动脱附, 避免了酶解法对细胞功能造成的损伤.  相似文献   

19.
Compositionally mixed, self-assembled monolayers (SAMs) derived from 16,16,16-trifluorohexadecanethiol and a normal alkanethiol, either hexadecanethiol or pentadecanethiol, were formed on Au(111) substrates. The relative composition of the films was determined using X-ray photoelectron spectroscopy and was found to approximately equal the equimolar composition of the isooctane solution from which they were formed. The frictional properties of the mixed films were measured on the nanometer scale using atomic force microscopy and were observed to decrease when the chain length of the CH(3)-terminated component was shortened by one methylene unit (i.e., when hexadecanethiol was replaced by pentadecanethiol). For comparison, the frictional properties of a mixed-chain-length CH(3)-terminated SAM derived from hexadecanethiol and pentadecanethiol in a 1:1 ratio was also examined. In contrast to the mixed CF(3)/CH(3) system, the latter mixed-chain-length system exhibited relatively higher friction when compared to single-component SAMs derived solely from either hexadecanethiol or pentadecanethiol. For both types of mixed films, the change in frictional properties that occurs as a result of modifying the position of neighboring terminal groups with respect to the surface plane is discussed in terms of the influence of local packing environments on interfacial energy dissipation (friction).  相似文献   

20.
Flexible honeycomb gold films supported by polymer sheets are fabricated by using polystyrene particle monolayers. The surfaces of the flexible gold films are covered with self-assembled monolayers (SAMs) of hydrophobic or hydrophilic thiol compounds, and the wettability of the modified surface is evaluated by measurements of the contact angles of water droplets. The contact angle of the film covered with hydrophobic SAM is ca. 150 degrees, which is greater than the value of 112 degrees for a flat gold surface, while the values for hydrophilic SAM are below 10 degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号