首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends were prepared using melt processing. The effects of maleic anhydride grafted PLA (PLA-g-MA) and calcium carbonate (CaCO3) content on mechanical, thermal, and morphological properties of the blends were investigated. PLA-g-MA was synthesized by varying monomer and initiator contents using a reactive melt-grafting process. Tensile properties of PLA/PBAT blend were enhanced with adding 2 phr of PLA-g-MA. SEM micrographs exhibited the improvement of interfacial adhesion between PLA and PBAT in the compatibilized blend. Moreover, thermal stability of the blends improved with presence of PLA-g-MA. With increasing CaCO3 content, Young’s modulus of the composites increased.  相似文献   

2.
On novel bio-hybrid system based on PLA and POSS   总被引:1,自引:0,他引:1  
In this work, a novel strategy for the preparation of bio-hybrid systems based on polylactic acid (PLA) and polyhedral oligomeric silsesquioxane (POSS) was developed. Indeed, the new method consists in a preliminary functionalization of the polymer matrix and a subsequent reaction of silsesquioxane molecules, characterized by amino or hydroxyl functionalities, potentially capable of reacting with maleic anhydride groups created onto PLA by a free radical process. The method adopted to create maleic anhydride-grafted polylactic acid (PLA-g-MA) allowed to graft 0.7 wt% of MA onto the polymer backbone, avoiding a dramatic reduction of PLA molecular mass. 1H-NMR measurements demonstrated a different reactivity of the two used POSS, namely trans-cyclohexanediolisobutyl POSS (POSS-OH) and aminopropyl heptaisobutyl POSS (POSS-NH2). Indeed, the amino group of POSS-NH2 was found to react with the maleic anhydride group of PLA-g-MA allowing to obtain a hybrid system, carrying silsesquioxane molecules along the polymer backbone while the reactivity of POSS-OH turned out to be much lower. Thermal properties of the synthesized hybrid systems were assessed by means of DSC measurements. Indeed, the presence of POSS grafted onto the macromolecular chain was found to improve PLA crystallinity, by affecting the crystal nucleation density. Moreover, a decrease of surface water wettability was observed in the films made of PLA-g-MA/POSS-NH2.  相似文献   

3.
Polylactic acid (PLA) was toughened by 5–20 wt % of natural rubber (NR). Two different compatibilizers maleated PLA (PLA-g-MA) and maleated NR (NR-g-MA) were used as coupling agent. The blends were prepared using twin screw extruder at varying levels of NR. Mechanical, thermal and morphological analyses were carried out to study the effect of compatibilizer on PLA/NR blends compatibility.  相似文献   

4.
Maleic anhydride (MA) grafted poly(lactic acid) (PLA) (PLA-g-MA) was synthesized from PLA. Proton nuclear magnetic resonance confirmed the grafting of the MA. PLA-g-MA and PLA were used to prepare polymeric nanoparticles. Particle size distributions were measured by dynamic light scattering, and colloidal stability was determined by (zeta) ζ-potential. The ζ-potential becomes more negative for PLA-g-MA than PLA nanoparticle dispersions, due to the presence of deprotonated carboxylic acid groups on the backbone of the PLA and confirms the MA grafting results. Maleic anhydride grafted on PLA backbone improves the covalent conjugation with ovalbumin (OVA) compared to OVA physically adsorbed on the particles. The chemical conjugation was carried out via amide linkages between the carboxylic groups of the nanoparticles, activated with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, and the amino groups of the protein. The amount of protein conjugated was measured by using the bicinchoninic acid method and is threefold higher compared to the adsorbed OVA. Moreover, the PLA-g-MA nanoparticles increased the amount of conjugated OVA by 36 wt% compared to PLA nanoparticles. OVA adsorption and OVA conjugation provided colloidal dispersions with excellent stability.  相似文献   

5.
A response surface methodology (RSM) design was used to analyze the effects of maleic anhydride (MA) and 2,5-bis(tert-butylperoxy)-2,5-dimethyl hexane (Luperox or L101) content, and TSE screw speed on the degree of grafted MA (MAg) and number average molecular weight (Mn) of maleated PLA (PLA-g-MA), which can be used as a reactive compatibilizer in production of PLA blends with various components. PLA-g-MA's FTIR peaks indicated that MA was grafted onto the PLA backbone and oligomeric MA was also present. A maximum of 0.52 wt% MAg determined by titration was achieved at the expense of a 50% reduction of Mn and an increase in the polydispersity index to around 2.0. Generally, increasing L101 increased the degree of grafting and decreased Mn. L101 and MAg had a large effect on the stability of PLA-g-MA's Mn during storage. Nominally, amounts of MA equal to 4.5 wt%, L101 between 0.45 and 0.65 wt%, and screw speed of 20 rpm provided the optimal conditions for grafting MA onto PLA.  相似文献   

6.
Polymer blend nanocomposites based on thermoplastic polyurethane (PU) elastomer, polylactide (PLA) and surface modified carbon nanotubes were prepared via simple melt mixing process and investigated for its mechanical, dynamic mechanical and electroactive shape memory properties. Chemical and structural characterization of the polymer blend nanocomposites were investigated by Fourier Transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD). Loading of the surface modified carbon nanotube in the PU/PLA polymer blends resulted in the significant improvement on the mechanical properties such as tensile strength, when compared to the pure and pristine CNT loaded polymer blends. Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the PU/PLA blend slightly increases on loading of pristine CNT and this effect is more pronounced on loading surface modified CNTs. Thermal and electrical properties of the polymer blend composites increases significantly on loading pristine or surface modified CNTs. Finally, shape memory studies of the PU/PLA/modified CNT composites exhibit a remarkable recoverability of its shape at lower applied dc voltages, when compared to pure or pristine CNT loaded system.  相似文献   

7.
Polylactide (PLA) films blended with 10 wt% poly(butylene adipate-co-terephthalate) (PBAT) were prepared by using a twin screw extruder in the presence of the nucleating agent of titanium dioxide (TiO2) and the compatibilizers of toluene diisocyanate (TDI) and PLA-grafted-maleic anhydride (PLA-g-MA). The synergistic effect of the nucleation and compatibilization on the properties and crystallization behavior of the PLA/PBAT (PLB) films was explored. The results showed that the addition of TiO2 significantly enhanced the tensile strength and the impact tensile resistance of the PLB films while slightly decreased its thermal stability. In addition, the compatibilizers of TDI and PLA-g-MA in the system not only affected the crystallinity and cold crystallization process of the PLB films, but also increased the mechanical properties of them due to the improvement of the interfacial interaction between PLA and PBAT revealed by the morphological measurement. The synergistic effects of the nucleating agent and the compatibilizer afforded the blend films with increased tensile strength and impact tensile toughness, improved cold crystallization property and χ c.  相似文献   

8.
The thermogravimetric analysis (TGA) was used to evaluate the polylactide (PLA) content in PLA/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends. The TGA curves of PLA/PBAT blends containing magnesium oxide (MgO) can clearly show two-step weight loss profiles because PLA can be selectively depolymerized in PLA/PBAT blends under the catalysis of MgO, and thus the PLA content can be determined according to the TGA curve for the blends. The detection scope of this method is especially applicable to the PLA content in the range of 10–90 wt% in PLA/PBAT blends at a heating rate 10 °C·min−1. The measurement reliability was evaluated by parallel experiments. When the PLA content was 20, 50 and 80 wt%, the standard deviation (STDEV) and the absolute error for the measurements were less than 2.0 wt% and ±1.0 wt%, respectively, which indicated that the method is sufficiently reliable.  相似文献   

9.
In this study, the effects of epoxidized palm oil (EPO) on the mechanical and morphological properties of a blend of two types of biodegradable polymer, poly(lactic acid) (PLA) and polycaprolactone (PCL), were investigated. The solution-casting process, with chloroform as a solvent, was used to prepare samples. Addition of EPO reduced the tensile strength and modulus but increased elongation at break for the PLA–PCL blend. The highest elongation at break was observed for the blend with 10 % (w/w) EPO content. Scanning electron microscopy (SEM) indicated that the fractured surface morphology of the PLA–PCL blend became more stretched and homogeneous in PLA–PCL–EPO. Possible interactions between the PLA–PCL blend and EPO were also characterized by use of Fourier-transform infrared (FTIR) spectroscopy. Thermal stability was studied by differential scanning calorimetry and thermogravimetric analysis. The results from FTIR and SEM revealed that the miscibility of the PLA–PCL blend was improved by addition of EPO.  相似文献   

10.
In this work, new ways of plasticizing polylactide (PLA) with low molecular poly(ethylene glycol) (PEG) were developed to improve the ductility of PLA while maintaining the plasticizer content at maximum 20 wt.% PLA. To this end, a reactive blending of anhydride-grafted PLA (MAG-PLA) copolymer with PEG, with chains terminated with hydroxyl groups, was performed. During the melt-processing, a fraction of PEG was grafted into the anhydride-functionalized PLA chains. The role of the grafted fraction was to improve the compatibility between PLA and PEG. Reactive extrusion and melt-blending of neat and modified PLA with PEG did not induce any dramatic drop of PLA molecular weight. The in situ reactive grafting of PEG into the modified PLA in PLA/PEG blends showed a clear effect on the thermal properties of PLA. It was demonstrated by DSC that the mobility gained by PLA chains in the plasticized blends yielded crystallization. The grafting of a fraction of PEG into PLA did not affect this process. However, DSC results obtained after the second heating showed an interesting effect on the Tg when 20 wt.% PEG were melt blended with neat PLA or 10 wt.% MAG-PLA. In the latter case, the Tg displayed by the reactive blend was shifted to even lower temperatures at around 14 °C, while the Tg of neat PLA and PLA blended with 20 wt.% PEG was around 60 and 23 °C, respectively. Regarding viscoelastic and viscoplastic properties, the presence of MAG-PLA does not significantly influence the behavior of plasticized PLA. Indeed, with or without MAG-PLA, elastic modulus and yield stress decrease, while ultimate strain increases with the addition of PEG into PLA.  相似文献   

11.
Poly(ε‐caprolactone)/polylactide blend (PCL/PLA) is an interesting biomaterial because the two component polymers show good complementarity in their physical properties. However, PCL and PLA are incompatible thermodynamically and hence the interfacial properties act as the important roles controlling the final properties of their blends. Thus, in this work, the PCL/PLA blends were prepared by melt mixing using the block copolymers as compatibilizer for the studies of interfacial properties. Several rheological methods and viscoelastic models were used to establish the relations between improved phase morphologies and interfacial properties. The results show that the interfacial behaviors of the PCL/PLA blends highly depend on the interface‐located copolymers. The presence of copolymers reduces the interfacial tension and emulsified the phase interface, leading to stabilization of the interface and retarding both the shape relaxation and the elastic interface relaxation. As a result, besides the relaxation of matrices (τm) and the shape relaxation of the dispersed PLA phase (τF), a new relaxation behavior (τβ), which is attribute to the relaxation of Marangoni stresses tangential to the interface between dispersed PLA phase and matrix PCL, is observed on the compatibilized blends. In contrast to that of the diblock copolymers, the triblock copolymers show higher emulsifying level. However, both can improve the overall interfacial properties and enhance the mechanical strength of the PCL/PLA blends as a result. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 756–765, 2010  相似文献   

12.
Polylactic acid (PLA) in a crystallized state has mechanical properties at high temperatures superior to PLA in an amorphous state. However, a long annealing time is required to fully crystallize PLA. In this study, microfibrillated cellulose (MFC)-reinforced partially crystallized PLA composites were produced, with the goal of reducing the time required to fabricate PLA parts. A series of PLA/MFC composites at a fiber content of 10 wt% from degree of crystallinity (Xc) 0 to 43% was obtained by annealing at 80 °C. Although the annealing time required to obtain a composite (Xc: 17%) was only around one-seventh of the 20 min needed to fully crystallize neat PLA (Xc: 41%), both materials had comparable rigidity above the glass transition temperature (T g) and creep deformation at around T g. These results showed that partially crystallized PLA/MFC composite can replace fully crystallized neat PLA.  相似文献   

13.
Polymeric methylene diphenyl diisocyanate (PMDI) was added as chain extender to a blend of recycled poly(ethylene terephthalate) (R-PET) and linear low density polyethylene (LLDPE) with compatibilizer of maleic anhydride-grafted poly(styrene-ethylene/butadiene-styrene) (SEBS-g-MA). Hydroxyl end groups of PET can react with both isocyanate groups of PMDI and maleic anhydride groups of SEBS-g-MA, which are competing reactions during reactive extrusion. The compatibility and properties of the blends with various contents of PMDI were systemically evaluated and investigated. WAXD results and SEM observations indicated that chain extension inhibits the reaction between PET and SEBS-g-MA. As the PMDI content increased, the morphology of dispersed phase changed from droplet dispersion to rodlike shape and then to an irregular structure. The DSC results showed that the crystallinity of PET decreased in the presence of PMDI, and the glass transition temperature (Tg) of PET increased with addition of 0-0.7 w% PMDI. The impact strength of the blend with 1.1 w% PMDI increased by 120% with respect to the blend without PMDI, accompanied by only an 8% tensile strength decrease. It was demonstrated that the chain extension of PET with PMDI in R-PET/LLDPE/SEBS-g-MA blends not only decreased the compatibilization effect of SEBS-g-MA but also hindered the crystallization of PET.  相似文献   

14.
王志刚 《高分子科学》2013,31(9):1276-1283
In this work the nucleation and growth of spherulites for the below polylactide (PLA) layer in poly(ε-caprolactone)/polylactide (PCL/PLA) double-layer films during isothermal crystallization at various temperatures above the melting point of PCL have been investigated by using polarized optical microscopy (POM). It is revealed that two types of spherulitic morphologies are observed in PCL/PLA double-layer films. One is the well defined highly birefringent spherulites, and the other one is the coarse spherulites. It is interesting to find that the spherulitic growth rate of the coarse spherulites is higher than that of the well defined spherulites. It is thought that the coarse spherulites nucleate and grow with the assistance of the interfaces between the PCL and PLA layers, and the well defined highly birefringent spherulites only nucleate and grow in the PLA layer.  相似文献   

15.
A series of proposed plasticizers for poly(vinyl chloride) (PVC), based on poly(?-caprolactone) (PCL) with octanoate and benzoate-terminal groups, were synthesized with various microstructures and molecular weights (MW) and tested for biodegradability as well as for mechanical performance, and leaching resistance in blends with PVC. The plasticization efficiency of each was characterized by measuring the glass transition temperature (Tg) and tensile properties of PCL/PVC blends. The PCL-octanoate plasticizers demonstrated plasticization efficiency similar to di(ethylhexyl) phthalate (DEHP) with the same plasticizer loading. PCL-benzoate/PVC blends had much higher Tgs (∼20 °C higher) compared to PCL-octanoate/PVC and DEHP/PVC blends. Yield stresses were about two times higher for PCL-benzoate/PVC blends compared to PCL-octanoate/PVC and DEHP/PVC blends, reflecting the stiffer nature of such blends. Biodegradation was rapid for all PCL-octanoates, with the exception of linear PCL-octanoates with arm molecular weights >103 g mol−1. Biodegradation rates of PCLs by Rhodococcus rhodocrous were not affected by microstructure for the range of PCL topologies studied (linear versus three or four arms) but were slower for PCLs made from commercial PCL-diols that had a central ether linkage due to the initiator used to make these compounds. Leaching resistance was higher as PCL molecular weight increased and, for pairs of comparable sized species, significantly less PCL-benzoate leached out compared to the PCL-octanoate. For the range of PCL topologies studied, the number of arms did not significantly affect leaching resistance. In summary, both the end group and the molecular weight influenced the leaching resistance of the PCL. PCL-octanoates were comparable plasticizers to DEHP in terms of the mechanical properties examined, and were rapidly degraded by a common soil microorganism.  相似文献   

16.
Casein (and its sodium salt, sodium caseinate, SC) is an inexpensive natural milk protein that is used as a biodegradable biomaterial, especially to produce packaging films. However, to enhance some of its properties, it needs to be blended with other polymers, which should preferably be biodegradable such as poly lactic acid (PLA) and poly ε-caprolactone (PCL). New SC-g-PLA and SC-g-PCL graft copolymers have been prepared and unambiguously characterized, in particular by 1H and DOSY NMR. The grafting degrees are high (between 24 and 35% by weight) and result in variations of properties, such as hydrophobicity and thermal properties. The microstructures of SC/PLA and SC/PCL blends were studied and compared, with and without the addition of the SC-g-PLA and SC-g-PCL copolymers to test the compatibilization capacity of these new biodegradable copolymers.  相似文献   

17.
Despite their immiscibility, blending polylactic acid (PLA) with poly(ε-caprolactone) (PCL) provides an efficient strategy for obtaining a biopolymer blend with tailored properties due to their complementary physical properties. In this study, graphene oxide (GO) was employed as a 2-D nanofiller and nucleating agent to improve the properties of the immiscible PLA/PCL blends at 70/30, 50/50, and 30/70 wt ratios. Nanofibers of PLA/PCL blends and PLA/PCL/GO composites were investigated. It was interesting to find that the GO selectively localized in the minor phase resulting from the phase separation. The selective localization of the GO as the nucleating agent had an influence on the degree of crystallinity and crystalline morphology in the blended composites. This study also demonstrated that the molecular chains in the PLA phase oriented along the fiber axes, while in the PCL phase, the partial crystallites changed their orientation direction to be perpendicular to the fiber axes with the addition of GO.  相似文献   

18.
Multi-walled carbon nanotube (MWCNT) reinforced polylactide (PLA) nanocomposites were injected molded into a mold with micro needle patterns. In order to alleviate the hesitation effect caused by an increased melt viscositgy of PLA/CNT nanocomposites, the effects of the injection speed and holding pressure on the replication property were investigated. The effects of MWCNTs on the crystallization, thermal behavior, replication properties, replication and surface properties of micro injection molded PLA/CNT nanocomposites were investigated. An analysis of crystallinity and thermal behavior indicated that the MWCNTs promoted the unique α’ to α crystal transition of PLA, leading to an enhancement of surface modulus and hardness, as measured using a nanoindentation technique. The specific interaction between PLA and MWCNTs was characterized using an equilibrium melting point depression technique. Furthermore, the MWCNTs increased the activation energy for thermal degradation of PLA due to the physical barrier effect. The improved replication quality of the microfeatures in the PLA/MWCNT nanocomposites has been achieved by elevating injection speed and holding pressure, which enhances the polymer filling ability within the micro cavity. A replication ratio greater than 96% for the micro injection molded PLA/CNT nanocomposites were achieved at holding pressure of 100 MPa and injection speed of 120 mm/s. This study shows that processing conditions significantly influence the replication and surface properties of micro injection molded PLA/CNT nanocomposites.  相似文献   

19.
Ageing behaviour of SBR/EVA blends due to the effects of heat, ozone, and gamma radiation was studied with reference to blend ratio, three crosslinking systems (sulfur, peroxide and mixed) and a compatibiliser (SEBS-g-MA). It was found that an increase in the EVA content of the blends enhanced the ageing characteristics. Among the different crosslinking systems, a peroxide cured system exhibited the best retention of properties even after severe ageing. Tensile strength of peroxide cured SBR/EVA blends increased slightly after ageing for three days at 70 °C due to continued crosslinking, whereas tensile strength of all blends decreased on ageing at 100 °C. Compatibilisation with SEBS-g-MA improved the thermal, gamma and water ageing resistance of SBR/EVA blends.  相似文献   

20.
The miscibility of poly(4-hydroxystyrene-co-methoxystyrene) (HSMS) and poly(ε-caprolactone) (PCL) was investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). HSMS/PCL blends were found to be miscible in the whole composition range by detecting only a glass transition temperature (Tg), for each composition, which could be closely described by the Fox rule. The crystallinity of PCL in the blends was dependent on the Tg of the amorphous phase. The greater the HSMS content in the blends, the lower the crystallinity. The polymer–polymer interaction parameter, χ32, was calculated from melting point depression of PCL using the Nishi-Wang equation. The negative value of χ32 obtained for HSMS/PCL blends has been compared with the value of χ32 for poly(4-hydroxystyrene) (P4HS)/PCL blends. The specific nature, quantitative analysis, and average strength of the intermolecular interactions in HSMS/PCL and P4HS/PCL blends have been determined at room temperature and in the molten state by means of Fourier transform infrared spectroscopy (FTIR) measurements. The FTIR results have been in good correlation with the thermal behavior of the blends. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 95–104, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号