首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Correlative scanning probe microscopy of chemical identity, surface potential, and mechanical properties provide insight into the structure–function relationships of nanomaterials. However, simultaneous measurement with comparable and high resolution is a challenge. We seamlessly integrated nanoscale photothermal infrared imaging with Coulomb force detection to form peak force infrared–Kelvin probe force microscopy (PFIR‐KPFM), which enables simultaneous nanomapping of infrared absorption, surface potential, and mechanical properties with approximately 10 nm spatial resolution in a single‐pass scan. MAPbBr3 perovskite crystals of different degradation pathways were studied in situ. Nanoscale charge accumulations were observed in MAPbBr3 near the boundary to PbBr2. PFIR‐KPFM also revealed correlations between residual charges and secondary conformation in amyloid fibrils. PFIR‐KPFM is applicable to other heterogeneous materials at the nanoscale for correlative multimodal characterizations.  相似文献   

2.
以聚3-己基噻吩(P3HT)为给体、[6,6]-苯基-C61-丁酸甲酯(PCBM)为受体的光伏体系作为研究对象,采用溶剂退火的后处理方法制备薄膜样品,利用紫外-可见(UV-Vis)吸收光谱、原子力显微镜(AFM)、X射线衍射(XRD)等测试手段分别对共混膜样品的形貌和结构进行表征,同时利用熵值统计方法对AFM形貌图像进行分析处理.并在此基础上制备太阳能电池器件,其结构为氧化铟锡导电玻璃/聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐/聚3-己基噻吩:[6,6]-苯基-C61-丁酸甲酯/金属铝(ITO/PEDOT:PSS/P3HT:PCBM/Al),研究了给受体共混比例(质量比)对活性层薄膜以及电池性能的影响.结果表明,受体PCBM含量的增加会影响P3HT给体相的有序结晶,当给受体比例为1:1时,活性层薄膜具有较宽的紫外-可见吸收特征,且具有较好的相分离和结晶度,基于该样品制备的电池器件其光电转换效率达到三种比例的最大值(2.77%).表明退火条件下,改变给受体比例可以影响活性层的微纳米结构而最终影响电池的光电转换效率.  相似文献   

3.
In this article, we report on the production by electrospinning of P3HT/PEO, P3HT/PEO/GO, and P3HT/PEO/rGO nanofibers in which the filler is homogeneously dispersed and parallel oriented along the fibers axis. The effect of nanofillers' presence inside nanofibers and GO reduction was studied, in order to reveal the influence of the new hierarchical structure on the electrical conductivity and mechanical properties. An in‐depth characterization of the purity and regioregularity of the starting P3HT as well as the morphology and chemical structure of GO and rGO was carried out. The morphology of the electrospun nanofibers was examined by both scanning and transmission electron microscopy. The fibrous nanocomposites are also characterized by differential scanning calorimetry to investigate their chemical structure and polymer chains arrangements. Finally, the electrical conductivity of the electrospun fibers and the elastic modulus of the single fibers are evaluated using a four‐point probe method and atomic force microscopy nanoindentation, respectively. The electrospun materials crystallinity as well as the elastic modulus increase with the addition of the nanofillers while the electrical conductivity is positively influenced by the GO reduction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Nanoribbon‐shaped nanocomposites composed of conjugated polymer poly(3‐hexylthiophene) (P3HT) nanoribbons and plasmonic gold nanorods (AuNRs) were crafted by a co‐assembly of thiol‐terminated P3HT (P3HT‐SH) nanofibers with dodecanethiol‐coated AuNRs (AuNRs‐DDT). First, P3HT‐SH nanofibers were formed due to interchain π–π stacking. Upon the addition of AuNRs‐DDT, P3HT‐SH nanofibers were transformed into nanoribbons decorated with the aligned AuNRs on the surface (i.e., nanoribbon‐like P3HT/AuNRs nanocomposites). Depending on the surface coverage of the P3HT nanoribbons by AuNRs, these hierarchically assembled nanocomposites exhibited broadened and red‐shifted absorption bands of AuNRs in nIR region due to the plasmon coupling of adjacent aligned AuNRs and displayed quenched photoluminescence of P3HT. Such conjugated polymer/plasmonic nanorod nanocomposites may find applications in fields, such as building blocks for complex superstructures, optical biosensors, and optoelectronic devices.  相似文献   

5.
Novel block copolymers, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide) (P3HT‐b‐PEO) were synthesized via Suzuki coupling reaction of P3HT and PEO homopolymers. The copolymers were characterized by NMR, gel permeation chromatography, differential scanning calorimeter, and UV–vis measurements. A series of devices based on the block copolymers with a fullerene derivative were evaluated after thermal or solvent annealing. The device using P3HT‐b‐PEO showed higher efficiency than using P3HT blend after thermal annealing. Phase‐separated structures in the thin films of block copolymer blends were investigated by atomic force microscopy to clarify the relationship between morphologies constructed by annealing and the device performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
The spatial arrangement of the side chains of conjugated polymer backbones has critical effects on the morphology and electronic and photophysical properties of the corresponding bulk films. The effect of the side‐chain‐distribution density on the conformation at the isolated single‐polymer‐chain level was investigated with regiorandom (rra‐) poly(3‐hexylthiophene) (P3HT) and poly(3‐hexyl‐2,5‐thienylene vinylene) (P3HTV). Although pure P3HTV films are known to have low fluorescence quantum efficiencies, we observed a considerable increase in fluorescence intensity by dispersing P3HTV in poly(methyl methacrylate) (PMMA), which enabled a single‐molecule spectroscopy investigation. With single‐molecule fluorescence excitation polarization spectroscopy, we found that rra‐P3HTV single molecules form highly ordered conformations. In contrast, rra‐P3HT single molecules, display a wide variety of different conformations from isotropic to highly ordered, were observed. The experimental results are supported by extensive molecular dynamics simulations, which reveal that the reduced side‐chain‐distribution density, that is, the spaced‐out side‐chain substitution pattern, in rra‐P3HTV favors more ordered conformations compared to rra‐P3HT. Our results demonstrate that the distribution of side chains strongly affects the polymer‐chain conformation, even at the single‐molecule level, an aspect that has important implications when interpreting the macroscopic interchain packing structure exhibited by bulk polymer films.  相似文献   

7.
张彬 《高分子学报》2020,(3):221-238,I0002
近十年来,随着功能高分子单晶(含单层或寡层片晶)工程及应用研究的不断深入,除了纳米尺度结晶形貌的表征以外,多功能原子力显微镜还被用于研究分子结构、结晶条件和后处理条件对功能高分子晶体性能(电、热、光、磁等)的影响,进一步还可采用扫描探针加工技术(机械刻蚀、电致刻蚀和热致刻蚀等)对其性能进行调控以构筑功能化聚集态结构和微图案.另一方面,超薄膜中单层或寡层片晶可为研究高分子结晶提供合适的模型体系,与原子力显微镜相结合,不但可以原位、实空间、高分辨地研究高分子的成核与生长过程(生长形态演变和生长动力学),还可以用于研究亚稳态折叠链片晶厚度和形态随热处理温度与时间的演化,从而加深对片晶内有序差异、片晶增厚与熔融行为和自诱导成核的认识.  相似文献   

8.
Poly(3-hexylthiophene)(P3 HT) thin films, obtained by normal spin-coating and solvent vapor assisted spin-coating(SVASP) before and after thermal annealing(TA), and the corresponding devices were prepared to unravel the microstructure-property relationship, which is of great importance for the development of organic electronics. When SVASP-TA films were used as the active layers of the organic field-effect transistors,a hole mobility up to 0.38 cm~2·V~(–1)·s~(–1) was achieved. This mobility was one of the highest values and one order of magnitude higher than that of the normal spin-coating films based transistors. The relationship between the microstructure and the device performance was fully investigated by UV-Vis absorption spectra, grazing incident X-ray diffraction(GIXD), and atomic force microscopy(AFM). The impressive mobility was attributed to the high crystallinity and ordered molecule packing, which stem from the synergistic effects of SVASP and thermal annealing.  相似文献   

9.
The charge recombination rate in poly(3-hexyl thiophene)/TiO(2) nanorod solar cells is demonstrated to correlate to the morphology of the bulk heterojunction (BHJ) and the interfacial properties between poly(3-hexyl thiophene) (P3HT) and TiO(2). The recombination resistance is obtained in P3HT/TiO(2) nanorod devices by impedance spectroscopy. Surface morphology and phase separation of the bulk heterojunction are characterized by atomic force microscopy (AFM). The surface charge of bulk heterojunction is investigated by Kelvin probe force microscopy (KPFM). Lower charge recombination rate and lifetime have been observed for the charge carriers in appropriate heterostructures of hybrid P3HT/TiO(2) nanorod processed via high boiling point solvent and made of high molecular weight P3HT. Additionally, through surface modification on TiO(2) nan,orod, decreased recombination rate and longer charge carrier lifetime are obtained owing to creation of a barrier between the donor phases (P3HT) and the acceptor phases (TiO(2)). The effect of the film morphology of hybrid and interfacial properties on charge carrier recombination finally leads to different outcome of photovoltaic I-V characteristics. The BHJ fabricated from dye-modified TiO(2) blended with P3HT exhibits 2.6 times increase in power conversion efficiency due to the decrease of recombination rate by almost 2 orders of magnitude as compared with the BHJ made with unmodified TiO(2). In addition, the interface heterostructure, charge lifetime, and device efficiency of P3HT/TiO(2) nanorod solar cells are correlated.  相似文献   

10.
In this work, we report a Kelvin probe microscopy investigation on the structural and electronic properties of gold and aluminum thin films evaporated on poly(3‐octyl‐thiophene) films. Our experimental setup allows us to perform scanning force microscopy (SFM) studies of the same area even if the sample is taken out of the SFM system for different processes (Au and Al evaporation). This allows a detailed study of the effect of adsorbed metal particles on the morphology and electrical properties of polymer thin films at the nanoscale. We found different behavior for both metals in morphology and electrical properties at the interface. These results can contribute to explain what happens at the metal–polymer interface of the devices when the metal contacts are grown. Thereby the observed nanoscale structural changes can be correlated with the overall performance of the fabricated devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1083–1093  相似文献   

11.
Advanced composite materials aimed for construction of organic photovoltaic cells have been studied by atomic force microscopy (AFM). The composites are based on poly(3-hexylthiophene) (P3HT), [6,6]-phenyl C61-butyric acid methyl ester (PCBM) and two different chiral photosensitive liquid crystalline (LC) materials. The objective of the study was to examine the nanoscale morphology of the active layer without and after annealing at specific temperature. The preliminary results of AFM observation of the morphological changes done on the investigated composites revealed an increase in the surface ordering. The surface area ratio decreases for both studied composites, while the basic roughness parameters (Sa and Sq) have been found toughly dependent on the structure of the photosensitive LC dopant.  相似文献   

12.
We report on the effects of aggregation of P3HT with ordered conformation in solution on improving the uniaxial alignment of the P3HT nanofibers by zone casting.Two approaches were employed to change the aggregation of P3HT:P3HT blending with coil insulating polymer and ultrasonic oscillating.The insulator polymer(i.e.PS) which has good solubility in the solution would disturb the aggregation of P3HT to prevent the chains entanglement.The ultrasonic oscillation can further improve the P3HT aggregation with ordered conformation in the solution.As a result,the P3HT nanofibers in the film grew much orientedly by zone casting the ultrasonic oscillating P3HT/PS polymer blends solution than the same solvent P3HT solution without ultrasonic oscillating and blending.The P3HT tt-tt stacking direction is parallel to the alignment direction of the nanofibers.Meanwhile,the P3HT/PS blend ratio and PS molecular weight have influence on the uniaxial alignment of P3HT nanofibers.Only P3HT/PS is 1:1, the P3HT nanofibers oriented well.The low molecular weight PS can make the P3HT nanofibers orient better than that of the high molecular weight.  相似文献   

13.
利用旋转涂膜方法制备了以P3HT:PCBM为有源层的聚合物太阳能电池, 器件结构为ITO/PEDOT:PSS/P3HT:PCBM/Al(氧化铟锡导电玻璃/聚二氧乙基噻吩:聚对苯乙烯磺酸/聚三已基噻酚:富勒烯衍生物/铝),研究了退火温度对聚合物太阳能电池性能的影响. 实验发现: 聚合物薄膜经过120 °C退火10 min处理后, 开路电压(Voc)达到0.64 V, 短路电流密度(Jsc)为10.25 mA·cm-2, 填充因子(FF) 38.1%, 光电转换效率(PCE)达到2.00%. 为了讨论其内在机制, 对不同退火条件下聚合物薄膜进行了各种表征. 从紫外-可见吸收光谱中发现, 退火处理使P3HT在可见光范围内吸收加强且吸收峰展宽, 特别是在560和610 nm处的吸收强度明显增大; X射线衍射(XRD)结果表明, 120 °C退火后P3HT在(100)晶面上的衍射强度是未退火薄膜的2.8倍, 有利于光生载流子的输运; 原子力显微镜(AFM)研究结果表明, 退火显著增大了P3HT与PCBM的相分离程度, 提高了激子解离的几率; 傅里叶变换红外(FTIR)光谱验证了退火并没有引起聚合物材料物性的变化.  相似文献   

14.
A unified approach to the synthesis of the series of higher acenes up to previously unreported undecacene has been developed through the on‐surface dehydrogenation of partially saturated precursors. These molecules could be converted into the parent acenes by both atomic manipulation with the tip of a scanning tunneling and atomic force microscope (STM/AFM) as well as by on‐surface annealing. The structure of the generated acenes has been visualized by high‐resolution non‐contact AFM imaging and the evolution of the transport gap with the increase of the number of fused benzene rings has been determined on the basis of scanning tunneling spectroscopy (STS) measurements.  相似文献   

15.
开发了一类新型阳极界面缓冲材料PbI2,制备了结构为ITO/PbI2/P3HT:PC61BM/Al(氧化铟锡导电玻璃/碘化铅/聚三已基噻吩:富勒烯衍生物/铝)的器件,制备工艺包括旋涂和蒸镀,考察了PbI2在聚合物太阳能电池原型器件ITO/P3HT:PC61BM/Al中的效果。不同碘化铅浓度,退火温度,退火时间,对PbI2薄膜的质量都会有影响。很显然,高质量的PbI2薄膜将会带来好的光电转化效率。PbI2薄膜的透光性,结晶性,以及表面形貌可以用来描述所成薄膜的质量好坏。对能带来最好性能的碘化铅薄膜进行了紫外-可见光谱,X射线粉末衍射(XRD),原子力显微镜(AFM),扫描电子显微镜(SEM)等表征。实验发现,太阳能电池器件的效率对PbI2浓度比较敏感,最优化的条件为,旋涂浓度为3 mg·mL-1,100 ℃退火30 min,其电池的开路电压(Voc)达到0.45 V,短路电流密度(Jsc)为7.9 mA·cm-2,填充因子(FF)为0.46,与没有界面缓冲材料的器件相比,光电转换效率(PCE)由0.85%提高到1.64%。  相似文献   

16.
A series of tri(alkoxyl)benzene-fullerene dyads(PCBB-Cn, n=4, 6, 8, 10, 12) with varied tri(alkoxyl) chain lengths was designed, synthesized and used as acceptor materials in polymer solar cells(PSCs). The five fullerene dyads possess similar absorption spectra in dilute solution, decreased glass-transition temperature(Tg) and gradually elevated lowest unoccupied molecular orbital(LUMO) energy levels from -3.87 eV to -3.73 eV with the increase of the alkoxy chain length. In the fabrication of PSCs with poly(3-hexylthiophene)(P3HT) as donor and the fullerene dyads as acceptor, PCBB-Cn with longer tri(alkoxyl) chains and lower Tg can induce crystalline structure of P3HT during spin-coating the photoactive layer at room temperature and form nanoscale phase separated interpenetrating network of P3HT:PCBB-Cn blend films, which results in the improvement of photovoltaic performance of PSCs. A power conversion efficiency of 3.03% for the PSCs based on P3HT:PCBB-C10 was obtained without thermal annealing or solvent annealing. The thermal and solvent annealing-free fabrication using the fullerene dyads as acceptor is very important for the roll to roll production of PSCs with flexible large area.  相似文献   

17.
The aggregation behavior of P3HT is investigated at the interface of orthogonal solvents for P3HT. The changeable characteristics of P3HT aggregate dispersions, for example, extent of aggregation and intrachain order, are studied by varying (1) the interfacial area, (2) the poor solvent used to induce aggregation – dichloromethane (DCM), hexane (HEX), and acetonitrile (AcN) – and (3) the relative composition of the good solvent, chloroform (CF), and poor solvents. The results are compared to those observed using rapid injection of the solvent. Miscibility gap values (Δδ) provide a reasonable justification of the assembly behavior of P3HT in the solvent mixtures in terms of the kinetics of polymer aggregation and the kinetics of solvent mixing at the interface. Atomic force microscopy (AFM) is used to analyze the morphology of films processed from dispersions with disparate characteristics, but having the same solvent composition, for example, 70:30 CF:HEX or 60:40 CF:DCM. Based on the disparity of the kinetics and miscibility gap values, the prevalence of specific structural motifs in the films, for example, spheroids (globules) and fibers, is effectively rationalized in terms of the structural attributes of the aggregates in the liquid phase rather than the evaporation rate (boiling point) differences of the solvents in the mixture. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 999–1011  相似文献   

18.
Mono- and multilayers of a novel amphiphilic hexapyridinium cation with six eicosyl chains (3) are spread at the air/water interface as well as on highly ordered pyrolytic graphite (HOPG). On water, the monolayer of 3 is investigated by recording surface pressure/area and surface potential/area isotherms, and by Brewster angle microscopy (BAM). Self-organized tubular micelles with an internal edge-on orientation of molecules form at the air/water interface at low surface pressure whereas multilayers are present at high surface pressure, after a phase transition. Packing motifs suggesting a tubular arrangement of the constituting molecules were gleaned from atomic force microscopy (AFM) investigations of Langmuir-Blodgett (LB) monolayers being transferred on HOPG at different surface pressures. These LB film structures are compared to the self-assembled monolayer (SAM) of 3 formed via adsorption from a supersaturated solution, which is studied by scanning tunnelling microscopy (STM). On HOPG the SAM of 3 consists of nanorods with a highly ordered edge-on packing of the aromatic rings and an arrangement of alkyl chains which resembles the packing of molecules at the air/water interface at low surface pressure. Additional details of the molecular packing were gleaned from single-crystal X-ray structure analysis of the hexapyridinium model compound 2b, which possesses methyl instead of eicosyl residues.  相似文献   

19.
There is remarkable interest in the fabrication of polymeric composite nano/micro-fibers by electrospinning for many applications ranging from bioengineering to water/air filtration. In almost all of these applications, the mechanical properties of both the polymer fibers and their assemblies, are significant. In this study, unmodified, 3-Glycidoxypropyltrimethoxysilane (GPTMS) or 3-Aminopropyltriethoxysilane (APTES) modified halloysite clay nanotube (HNT) reinforced polycaprolactone (PCL) nanofibers were successfully synthesized via the electrospinning. The morphology and mechanical features of the obtained electrospun fibers were investigated by atomic force microscopy (AFM) and AFM-based nanoindentation for single fibers in nanoscale, respectively. Besides, scanning electron microscopy and tensile strength tests were used to investigate whole fibrous structures in microscale. The AFMresults, accompanied by SEM and tensile strength, support the conclusion that silane-modification affected positively the morphology and mechanical characteristics of electrospun PCL nanofibers. Therefore, it was concluded that the morphological and mechanical features from the single fibers in the nanofiber mats were related to the whole fibrous structure.  相似文献   

20.
Aggregate dispersions of P3HT in two series of solvent mixtures, chloroform:dichloromethane and toluene:dichloromethane, are used to study the impact of the evaporation velocity and film thickness on the P3HT films processed using two spin‐coating speeds (1000 rpm and 2000 rpm). The structural order and surface morphology were investigated with UV/Vis absorption spectroscopy and atomic force microscopy techniques. There is no evidence that the characteristics of the liquid phase P3HT dispersions impact the structures of the films, which is in agreement with a previous study of drop cast P3HT films that were dried over much longer time periods. An association is observed between the extent of aggregation in the liquid phase and the thickness and surface roughness parameters of the films. However, the structural order does not correlate with the thickness of the films, which was previously reported for polymer films processed from amorphous polymer solutions in pure organic solvents. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 330–343  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号