首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Screening and early diagnosis are crucial to increase the success of cancer patients’ treatments and improve the survival rate. To contribute to this success, distinct electrochemical immunosensing platforms were developed for the analysis of the ExtraCellular Domain of the Human Epidermal growth factor Receptor 2 (HER2‐ECD) through sandwich assays on nanomaterial‐modified screen‐printed carbon electrodes (SPCEs). The most promising platforms showed to be SPCEs modified with (i) gold nanoparticles (AuNPs) and (ii) multiwalled carbon nanotubes combined with AuNPs. The antibody‐antigen interaction was detected using a secondary antibody labelled with alkaline phosphatase and 3‐indoxyl phosphate and silver ions as the enzymatic substrate. The electrochemical signal of the enzymatically generated metallic silver was recorded by linear sweep voltammetry. Under the optimized conditions, linear calibration plots were obtained between 7.5 and 50 ng/mL and the total assay time was 2 h 20 min, achieving LODs of 0.16 ng/mL (SPCE‐MWCNT/AuNP) and 8.5 ng/mL (SPCE‐AuNP), which are well below the established cut‐off value of 15 ng/mL for this cancer biomarker.  相似文献   

2.
The first observation of strong directional surface‐plasmon‐coupled emission (SPCE) of Rhodamine 110 in silica nanofilms deposited on silver nanolayers is reported. The preparation of the material is described in detail. The intensity of SPCE exceeds 10 times that of free space fluorescence and total linear light polarization in the SPCE ring is observed. A new experimental setup and an original data collection method is presented. Our material completely preserves its fluorescence properties for at least eight months.  相似文献   

3.
A prism‐based surface plasmon coupled emission (SPCE) imaging apparatus with a reverse Kretschmann (RK) configuration was developed and applied to dye‐doped polymer films. Highly polarized, directional and enhanced fluorescence images were obtained. The angular distribution of the SPCE images was in accordance with the validated theoretical calculation performed using Fresnel equation. Prism‐based SPCE imaging combined with microarray technology appears to be a promising platform for rapid and high‐throughput analysis, especially for high‐density arrays. We believe that prism‐based SPCE imaging has potential applications in biochemical research.  相似文献   

4.
The formation of nanometer‐sized gaps between silver nanoparticles is critically important for optimal enhancement in surface‐enhanced Raman scattering (SERS). A simple approach is developed to generate nanometer‐sized cavities in a silver nanoparticle thin film for use as a SERS substrate with extremely high enhancement. In this method, a submicroliter volume of concentrated silver colloidal suspension stabilized with cetyltrimethylammonium bromide (CTAB) is spotted on hydrophobic glass surfaces prepared by the exposure of the glass to dichloromethysilane vapors. The use of a hydrophobic surface helps the formation of a more uniform silver nanoparticle thin film, and CTAB acts as a molecular spacer to keep the silver nanoparticles at a distance. A series of CTAB concentrations is investigated to optimize the interparticle distance and aggregation status. The silver nanoparticle thin films prepared on regular and hydrophobic surfaces are compared. Rhodamine 6G is used as a probe to characterize the thin films as SERS substrates. SERS enhancement without the contribution of the resonance of the thin film prepared on the hydrophobic surface is calculated as 2×107 for rhodamine 6G, which is about one order of magnitude greater than that of the silver nanoparticle aggregates prepared with CTAB on regular glass surfaces and two orders of magnitude greater than that of the silver nanoparticle aggregates prepared without CTAB on regular glass surfaces. A hydrophobic surface and the presence of CTAB have an increased effect on the charge‐transfer component of the SERS enhancement mechanism. The limit of detection for rhodamine 6G is estimated as 1.0×10?8 M . Scanning electron microscopy and atomic force microscopy are used for the characterization of the prepared substrate.  相似文献   

5.
A novel core–shell magnetic nano‐adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro‐solid‐phase extraction followed by determination of rhodamine 6G using high‐performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m‐aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (34) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid‐base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano‐adsorbent was successfully applied to dispersive micro‐solid‐phase extraction coupled to high‐performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0–99.1, 89.5–92.7, and 86.9–105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%.  相似文献   

6.
A simple technique for the construction of a versatile diazirine‐functionalized nanostructured platform for enzymes photografting and electrochemical biosensing was proposed in this work. The feasibility of the approach was proved by photo crosslinking of an enzyme, tyrosinase, to diazirine‐activated aminated carbon nanotubes coated glassy carbon electrode. The analytical performances of the realized biosensor were evaluated employing catechol as analyte. Then the sensor based on the diazirine‐functionalized nanostructured platform with photografted tyrosinase was applied together with the high resolution technique Differential Alternative Pulses Voltammetry for dopamine determination in the linear concentration range of 5–25 μmol L?1 in the presence of interfering agents as uric acid up to its 100‐fold excess.  相似文献   

7.
The plasmon effect that silver nanoparticles have on the luminiscent and generation properties of rhodamine 6G molecules in aqueous alcohol solutions is studied. It is found that the intensities of absorption and emission increase when silver nanoparticles are added to aqueous solutions of rhodamine 6G. It is shown that upon the laser photoexcitation of aqueous solutions of rhodamine 6G dye, spontaneous fluorescence occurs that is converted into stimulated laser emission as the pump power grows. It is found that an increase in intensity and a drop in the generation threshold of stimulated emission are observed when silver nanoparticles are added to a solution of rhodamine 6G. It is shown that the dependence of absorbance, the intensity of fluorescence, and the dye’s generation of stimulated emission on the concentration of silver nanoparticles in solution falls as the proportion of alcohol grows.  相似文献   

8.
A glassy carbon electrode (GCE) was modified with nanopeapods formed by ferrocene filled single‐walled carbon nanotubes (Fc@SWNTs). The modified electrode showed bi‐directional electrocatalysis toward dopamine (DA), which suggested a synergistic effect of ferrocene and carbon nanotubes. Bi‐directional detection of DA was realized based on the modified electrode.  相似文献   

9.
A new, rapid, green, and cost‐effective magnetic solid‐phase extraction of ochratoxin A from red wine samples was developed using polydopamine‐coated magnetic multi‐walled carbon nanotubes as the absorbent. The polydopamine‐coated magnetic multi‐walled carbon nanotubes were fabricated with magnetic multi‐walled carbon nanotubes and dopamine by an in situ oxidative self‐polymerization approach. Transmission electron microscopy, dynamic light scattering, X‐ray photoelectron spectroscopy and vibrating sample magnetometry were used to characterize the absorbents. Ochratoxin A was quantified with high‐performance liquid chromatography coupled with fluorescence detection, with excitation and emission wavelengths of 338 and 455 nm, respectively. The conditions affecting the magnetic solid‐phase extraction procedure, such as pH, extraction solution, extraction time, absorbent amount, desorption solution and desorption time were investigated to obtain the optimal extraction conditions. Under the optimized conditions, the extraction recovery was 91.8–104.5% for ochratoxin A. A linear calibration curve was obtained in the range of 0.1–2.0 ng/mL. The limit of detection was 0.07 ng/mL, and the limit of quantitation was 0.21 ng/mL. The recoveries of ochratoxin A for spiked red wine sample ranged from 95.65 to 100.65% with relative standard deviation less than 8%. The polydopamine‐coated magnetic multi‐walled carbon nanotubes showed a high affinity toward ochratoxin A, allowing selective extraction and quantification of ochratoxin A from complex sample matrixes.  相似文献   

10.
In this research, the graphene oxide nanoribbons (GONRs) were substantially synthesized by the oxidative longitudinal unzipping of the multi‐walled carbon nanotubes (MWCNTs). Then, a direct electrochemical technique was employed for reducing GONRs adsorbed on the screen printed carbon electrode (SPCE). Electrochemical reduction effectively eliminated the oxygen‐containing groups in the GONRs and produced the electrochemically reduced graphene nanoribbons (ERGNRs). Field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), and X‐ray diffraction (XRD) were employed to characterize the materials. The modified SPCE with ERGNRs (ERGNRs/SPCE) displayed acceptable electrocatalytic characteristics towards the oxidation of dopamine (DA) and uric acid (UA) and applied to the simultaneous determination of these two analytes. ERGNRs/SPCE has a peak potential difference of 245 mV between DA and UA. The anodic peak currents of DA and UA were linear within the concentration ranges between 0.5 and 300.0 μM and 1.0 to 400.0 μM in phosphate buffer (pH=7.0) respectively. The detection limit of the technique for DA is 0.15 μM (S/N=3) and for UA is 0.3 μM (S/N=3). The proposed approach has been applied to the determination of DA and UA in real samples and generated acceptable outputs.  相似文献   

11.
A bio‐inspired design of using metal–organic framework (MOF) microcrystals with well‐defined multi‐shelled hollow structures was used as a matrix to host multiple guests including molecules and nanoparticles at separated locations to form a hierarchical material, mimicking biological structures. The interactions such as energy transfer (ET) between different guests are regulated by precisely fixing them in the MOF shells or encapsulating them in the cavities between the MOF shells. The proof‐of‐concept design is demonstrated by hosting chromophore molecules including rhodamine 6G (R6G) and 7‐amino‐4‐(trifluoromethyl)coumarin (C‐151), as well as metal nanoparticles (Pd NPs) into the multi‐shelled hollow zeolitic imidazolate framework‐8 (ZIF‐8). We could selectively establish or diminish the guest‐to‐framework and guest‐to‐guest ET. This work provides a platform to construct complex multifunctional materials, especially those need precise separation control of multi‐components.  相似文献   

12.
A new and facile method for the preparation of single‐walled carbon nanotubes (SWCNTs) decorated with Cu nanoparticles (CuNPs) formed on a double‐stranded DNA template in aqueous solution has been developed. A specially designed synthetic DNA sequence, containing a single‐stranded domain for the dispersion of carbon nanotubes and double‐stranded domains for the selective growth of CuNPs, was utilized. The final SWCNT/CuNP hybrids were characterized using fluorescence spectroscopy and transmission electron microscopy. The analyses clearly demonstrated the selective formation of uniform CuNPs on the carbon nanotube scaffold.  相似文献   

13.
Fluorescent nanomaterials such as single‐walled carbon nanotubes (SWCNTs) have many advantages in terms of their photophysics, but it is difficult to target them to specific locations in living systems. In contrast, the green fluorescent protein (GFP) has been genetically fused to proteins in many cells and organisms. Therefore, GFP can be seen not only as a fluorophore but as a universal target/handle. Here, we report the conjugation of GFP‐binding nanobodies to DNA‐wrapped SWCNTs. This approach combines the targeting capabilities of GFP‐binding nanobodies and the nonbleaching near‐infrared fluorescence (850–1700 nm) of SWCNTs. These conjugates allow us to track single Kinesin‐5‐GFP motor proteins in developing embryos of Drosophila melanogaster. Additionally, they are sensitive to the neurotransmitter dopamine and can be used for targeted sensing of dopamine in the nm regime.  相似文献   

14.
《中国化学会会志》2018,65(9):1082-1089
In this work, a screen‐printed carbon electrode (SPCE) was modified with a cobalt/porous silicon (Co@PSi) nanocomposite powder to develop a nonenzymatic sensor for the detection of hydrogen peroxide. The Co@PSi nanocomposite was synthesized through the chemical reaction between silicon powder in a HF/HNO3 solution and cobalt cations. In this process, cobalt nanoparticles were anchored on the porous silicon. The structure and morphology of the synthesized nanocomposite were investigated by X‐ray diffraction, Fourier transform infrared spectroscopy, X‐ray photoemission spectroscopy, energy dispersive X‐ray spectroscopy, and field‐emission scanning electron microscopy. The constructed nonenzymatic, screen‐printed sensors based on the Co@PSi nanocomposite showed perfect electrocatalytic oxidation response to hydrogen peroxide over the range 1–170 and 170–3,770 μmol/L with the limit of detection of 0.8 μmol/L. In addition, the Co@PSi‐SPCE sensor exhibited good selectivity for the determination of H2O2 in the presence of common interfering species including glucose, ascorbic acid, uric acid, dopamine, nitrate, and nitrite ions. The constructed electrochemical sensor was successfully used for the determination of H2O2 in real samples.  相似文献   

15.
《Electroanalysis》2005,17(7):571-578
A two step non‐competitive affinity method for the trace determination of 1‐hydroxypyrene (1‐OHP) using a disposable molecularly imprinted polymer (MIP) modified screen‐printed carbon electrode (MIP‐SPCE) has been developed. The MIP was synthesized according to a novel strategy, which is described, and is capable of rebinding the phenolic analyte, 1‐hydroxypyrene (1‐OHP), from high pH aqueous organic media, via ionic interactions. In the first step of our method 1‐OHP was accumulated at the MIP‐SPCE from 35% aqueous methanol containing 0.014 M NaOH and 0.14 M NaCl, at open circuit. In the second step, the resulting SPCE with accumulated 1‐OHP was then transferred to fresh, clean phosphate buffered aqueous methanol, and subjected to cyclic voltammetry (CV) or differential pulse voltammetry (DPV). The latter technique proved to be more sensitive at detecting 1‐OHP, with a limit of detection of 182 nM and a linear range to 125 μM on unmodified electrodes. The possible effects of interference by related phenolic compounds in the MIP‐SPCE of 1‐OHP were investigated. Finally the method was evaluated by carrying out 1‐OHP determinations on spiked human urine samples; the recovery of 1‐OHP was 79.4% and the coefficient of variation was found to be 7.7% (n= 4) using a separate MIP‐SPCE for each determination. Therefore, the performance data suggests that the method is reliable at the concentrations examined in this study. The method was found to be superior to the direct determination of 1‐OHP in human urine by DPV alone, which was greatly affected by interference from uric acid.  相似文献   

16.
Graphene shells with a controllable number of layers were directly synthesized on Cu nanoparticles (CuNPs) by chemical vapor deposition (CVD) to fabricate a graphene‐encapsulated CuNPs (G/CuNPs) hybrid system for surface‐enhanced Raman scattering (SERS). The enhanced Raman spectra of adenosine and rhodamine 6G (R6G) showed that the G/CuNPs hybrid system can strongly suppress background fluorescence and increase signal‐to‐noise ratio. In four different types of SERS systems, the G/CuNPs hybrid system exhibits more efficient SERS than a transferred graphene/CuNPs hybrid system and pure CuNPs and graphene substrates. The minimum detectable concentrations of adenosine and R6G by the G/CuNPs hybrid system can be as low as 10?8 and 10?10 M , respectively. The excellent linear relationship between Raman intensity and analyte concentration can be used for molecular detection. The graphene shell can also effectively prevent surface oxidation of Cu nanoparticles after exposure to ambient air and thus endow the hybrid system with a long lifetime. This work provides a basis for the fabrication of novel SERS substrates.  相似文献   

17.
A simple and reliable method was developed to detect two basic synthetic dyes, rhodamine B (RB) and rhodamine 6G (R6G), in wastewater and surface water samples by high performance liquid chromatography with fluorescence detection (HPLC‐FLD). These dyes have been reported to be both mutagenic and carcinogenic in various organisms. The contents of these two dyes in water samples were extracted by Oasis HLB solid‐phase extraction (HLB‐SPE), and were then determined by an isocratic HPLC using an Atlantis® T3‐C18 column. Water samples at various pH conditions and the compositions of eluents for SPE were evaluated. The results indicate that the proposed method is precise and sensitive in analyzing these two basic synthetic dyes, and the limits of quantitation were 1.5 ng/L for RB and 0.3 ng/L for R6G in 100 mL of water samples. The recovery of analytes in spiked surface water and municipal wastewater treatment plant (WWTP) effluent samples ranged from 61 to 90% with the precision (RSD) ranging from 2 to 12%. The concentrations of analytes were detected in various water samples ranging from 0.7 to 81 ng/L.  相似文献   

18.
The self‐assembly and induced supramolecular chirality of meso‐tetrakis(4‐sulfonatophenyl)porphyrin (TSPP) on both single‐wall (SWCNT) and multiwall carbon nanotubes (MWCNT) are investigated. Under mild pH conditions (pH 3), TSPP forms aggregates when CNTs are dispersed in an aqueous solution containing positively charged polyelectrolytes such as poly‐L ‐lysine (PLL) or poly(allylamine hydrochloride) (PAH). Evidence for the geometry of the porphyrin aggregates is obtained from absorption spectra, whereby the fingerprints of J‐ and H‐aggregates are clearly seen only in the presence of smaller‐diameter nanotubes. J‐aggregates are better stabilized with PLL, whereas in the presence of PAH mainly H‐aggregates prevail. Excited‐state interactions within these nanohybrids are studied by steady‐state and time‐resolved fluorescence. The porphyrin emission intensity in the nanohybrid solution is significantly quenched compared to that of TSPP alone, and this implies strong electronic interaction between CNTs and porphyrin molecules. Fluorescence lifetime imaging microscopy (FLIM) further supports that porphyrin arrays are associated with the MWCNT sidewalls wrapped in PLL. In the case of the SWCNT hybrid, spherical structures associated with longer fluorescence lifetime appeared after one week, indicative of H‐aggregates of TSPP. The latter are the result of π–π stacking of porphyrin units on neighboring nanotubes facilitated by the strong tendency of these nanotubes to interact with each other. These results highlight the importance of optimum dimensions and surface‐area architectures of CNTs in the control/stability of the porphyrin aggregates with promising properties for light harvesting.  相似文献   

19.
Assembly of G‐quadruplexes guided by DNA triplexes in a controlled manner is achieved for the first time. The folding of triplex sequences in acidic conditions brings two separated guanine‐rich sequences together and subsequently a G‐quadruplex structure is formed in the presence of K+. Based on this novel platform, label‐free fluorescent logic gates, such as AND, INHIBIT, and NOR, are constructed with ions as input and the fluorescence of a G‐quadruplex‐specific fluorescent probe NMM as output.  相似文献   

20.
Proteases play a central role in several widespread diseases. Thus, there is a great need for the fast and sensitive detection of various proteolytic enzymes. Herein, we have developed a carbon nanotube (CNT)‐based protease biosensing platform that uses peptides as a fluorescence probe for the first time. Single‐walled carbon nanohorns (SWCNHs) and thrombin were used to demonstrate this detection strategy. SWCNHs can adsorb a fluorescein‐based dye (FAM)‐labeled peptide (FAM‐pep) and quench the fluorescence of FAM. In contrast, thrombin can cleave FAM‐pep on SWCNHs and recover the fluorescence of FAM, which allows the sensitive detection of thrombin. This biosensor has a high sensitivity and selectivity toward thrombin, with a detection limit of 100 pM .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号