首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Reaction of the [Ni(9)C(CO)(17)](2-) dianion with CdCl(2)2.5 H(2)O in THF affords the novel bimetallic Ni--Cd carbide carbonyl clusters [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) (n=3-6), which undergo several protonation-deprotonation equilibria in solution depending on the basicity of the solvent or upon addition of acids or bases. Although the occurrence in solution of these equilibria complicates the pertinent electrochemical studies on their electron-transfer activity, they clearly indicate that the clusters [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) (n=3-6), as well as the structurally related [H(6-n)Ni(34)C(4)(CO)(38)](n-) (n=4-6), undergo reversible or partially reversible redox processes and provide circumstantial and unambiguous evidence for the presence of hydrides for n=3, 4 and 5. Three of the [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) anions (n=4-6) have been structurally characterized in their [NMe(3)(CH(2)Ph)](4)[H(2)Ni(30)C(4)(CO)(34)(CdCl)(2)]2 COMe(2), [NEt(4)](5)[HNi(30)C(4)(CO)(34)(CdCl)(2)]2 MeCN and [NMe(4)](6)[Ni(30)C(4)(CO)(34)(CdCl)(2)]6 MeCN salts, respectively. All three anions display almost identical geometries and bonding parameters, probably because charge effects are minimized by delocalization over such a large metal carbonyl anion. Moreover, the Ni(30)C(4) core in these Ni-Cd carbide clusters is identical within experimental error to those present in the [HNi(34)C(4)(CO)(38)](5-) and [Ni(35)C(4)(CO)(39)](6-) species, suggesting that the stepwise assembly of their nickel carbide cores may represent a general pathway of growth of nickel polycarbide clusters. The fact that the [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-)(n=4-6) anions display two valence electrons more than the structurally related [H(6-n)Ni(34)C(4)(CO)(38)](n-) (n=4-6) species has been rationalized by extended Hückel molecular orbital (EHMO) analysis.  相似文献   

2.
With the [Re(CO)(3)Br(3)](2-) ion as a precursor for the Re(I)(CO)(3) fragment, the diols (1R,2R)-cyclohexane-1,2-diol [(1R,2R)-Chxd], anhydroerythritol (AnEryt), and (1S,2S)-cyclopentane-1,2-diol [(1S,2S)-Cptd] form dinuclear monoanions in the salts (NBu(4))[(Re(2)(CO)(6){mu-(1R,2R)-ChxdH(-1)}(3)] (1), [K([18]crown-6)][Re(2)(CO)(6)(mu-OMe)(2)(mu-AnErytH(-1))] (2) and (NBu(4))[Re(2)(CO)(6){mu-(1S,2S)-CptdH(-1)}(3)] (3). The monoanionic diolato ligands in these triply bridged dirhenates(I) are monodentate. Bridging triolato ligation in the trirhenates(I) is supported by the anions of glycerol (Glyc) and methyl beta-D-ribopyranoside (Me-beta-D-Ribp), the latter binding in its (1)C(4) conformation, in (DBUH)(2)[Re(3)(CO)(9)(mu(3)-O)(mu(3)-GlycH(-3))]0.5 MeCN (4 a), (NEt(4))[Re(3)(CO)(9)(mu(3)-OMe)(mu(3)-GlycH(-3))] (4 b) and (DBUH)[Re(3)(CO)(9)(mu(3)-OMe)(mu(3)-(1)C(4)-Me-beta-D-Ribp2,3,4H(-3))] (5). The chiral sugar alcohols L-threitol (L-Thre) and D-arabitol (D-Arab) act as tetra- and pentadentate ligands, respectively, in (NEt(4))[Re(2)(CO)(6)(L-ThreH(-3))]MeCN (6) and (NEt(4))(2)(DBUH)(2)[Re(6)(CO)(18)(D-ArabH(-5))(2)] (7). Complexes 6 and 7 are free of supporting oxo or methoxo ligands and use solely the O-atom pattern of the polyol for the connection of the Re(I)(CO)(3) moieties.  相似文献   

3.
Dimeric rhodium(I) bis(carbonyl) chloride, [Rh(CO)(2)(mu-Cl)](2), is found to be a useful and convenient starting material for the syntheses of new cationic carbonyl complexes of both rhodium(I) and rhodium(III). Its reaction with the Lewis acids AlCl(3) or GaCl(3) produces in a CO atmosphere at room temperature the salts [Rh(CO)(4)][M(2)Cl(7)] (M = Al, Ga), which are characterized by Raman spectroscopy and single-crystal X-ray diffraction. Crystal data for [Rh(CO)(4)][Al(2)Cl(7)]: triclinic, space group Ponemacr; (No. 2); a = 9.705(3), b = 9.800(2), c = 10.268(2) A; alpha = 76.52(2), beta = 76.05(2), gamma = 66.15(2) degrees; V = 856.7(5) A(3); Z = 2; T = 293 K; R(1) [I > 2sigma(I)] = 0.0524, wR(2) = 0.1586. Crystal data for [Rh(CO)(4)][Ga(2)Cl(7)]: triclinic, space group Ponemacr; (No. 2); a = 9.649(1), b = 9.624(1), c = 10.133(1) A; alpha = 77.38(1), beta = 76.13(1), gamma = 65.61(1) degrees; V = 824.4(2) A(3); Z = 2; T = 143 K; R(1) [I > 2sigma(I)] = 0.0358, wR(2) = 0.0792. Structural parameters for the square planar cation [Rh(CO)(4)](+) are compared to those of isoelectronic [Pd(CO)(4)](2+) and of [Pt(CO)(4)](2+). Dissolution of [Rh(CO)(2)Cl](2) in HSO(3)F in a CO atmosphere allows formation of [Rh(CO)(4)](+)((solv)). Oxidation of [Rh(CO)(2)Cl](2) by S(2)O(6)F(2) in HSO(3)F results in the formation of ClOSO(2)F and two seemingly oligomeric Rh(III) carbonyl fluorosulfato intermediates, which are easily reduced by CO addition to [Rh(CO)(4)](+)((solv)). Controlled oxidation of this solution with S(2)O(6)F(2) produces fac-Rh(CO)(3)(SO(3)F)(3) in about 95% yield. This Rh(III) complex can be reduced by CO at 25 degrees C in anhydrous HF to give [Rh(CO)(4)](+)((solv)); addition of SbF(5) at -40 degrees C to the resulting solution allows isolation of [Rh(CO)(4)][Sb(2)F(11)], which is found to have a highly symmetrical (D(4)(h)()) [Sb(2)F(11)](-) anion. Oxidation of [Rh(CO)(2)Cl](2) in anhydrous HF by F(2), followed in a second step by carbonylation in the presence of SbF(5), is found to be a simple, straightforward route to pure [Rh(CO)(5)Cl][Sb(2)F(11)](2), which has previously been structurally characterized by us. All new complexes are characterized by vibrational and NMR spectroscopy. Assignment of the vibrational spectra and interpretation of the structural data are supported by DFT calculations.  相似文献   

4.
The reaction of [(Cp*Ta)(2)B(4)H(9)(μ-BH(4))] (1; Cp* = η(5)-C(5)Me(5)) with [Fe(2)(CO)(9)] in hexane yielded [(Cp*Ta)(2)B(5)H(7){Fe(CO)(3)}(2)] (2) and [(Cp*Ta)(2)B(5)H(9){Fe(CO)(3)}(4)] (3) in moderate yield. Cluster 2 represents the first example of a bicapped pentagonal-bipyramidal metallaborane with a deformed equatorial plane, and 3 can be described as a fused cluster in which two pentagonal-bipyramidal units are fused through a common 3-vertex triangular face. Compounds 2 and 3 have been characterized by mass spectrometry and IR, (1)H, (11)B, and (13)C NMR spectroscopy, and the geometric structures were unequivocally established by crystallographic analysis.  相似文献   

5.
Diaminostannylenes react with [Ru(3)(CO)(12)] without cluster fragmentation to give carbonyl substitution products regardless of the steric demand of the diaminostannylene reagent. Thus, the Sn(3)Ru(3) clusters [Ru(3){μ-Sn(NCH(2)(t)Bu)(2)C(6)H(4)}(3)(CO)(9)] (4) and [Ru(3){μ-Sn(HMDS)(2)}(3)(CO)(9)] (6) [HMDS = N(SiMe(3))(2)] have been prepared in good yields by treating [Ru(3)(CO)(12)] with an excess of the cyclic 1,3-bis(neo-pentyl)-2-stannabenzimidazol-2-ylidene and the acyclic and bulkier Sn(HMDS)(2), respectively, in toluene at 110 °C. The use of smaller amounts of Sn(HMDS)(2) (Sn/Ru(3) ratio = 2.5) in toluene at 80 °C afforded the Sn(2)Ru(3) derivative [Ru(3){μ-Sn(HMDS)(2)}(2)(μ-CO)(CO)(9)] (5). Compounds 5 and 6 represent the first structurally characterized diaminostannylene-ruthenium complexes. While a further treatment of 5 with Ge(HMDS)(2) led to a mixture of uncharacterized compounds, a similar treatment with the sterically alleviated diaminogermylene Ge(NCH(2)(t)Bu)(2)C(6)H(4) provided [Ru(3){μ-Sn(HMDS)(2)}(2){μ-Ge(NCH(2)(t)Bu)(2)C(6)H(4)}(CO)(9)] (7), which is a unique example of Sn(2)GeRu(3) cluster. All these reactions, coupled to a previous observation that [Ru(3)(CO)(12)] reacts with excess of Ge(HMDS)(2) to give the mononuclear complex [Ru{Ge(HMDS)(2)}(2)(CO)(3)] but triruthenium products with less bulky diaminogermylenes, indicate that, for reactions of [Ru(3)(CO)(12)] with diaminometalenes, both the volume of the diaminometalene and the size of its donor atom (Ge or Sn) are of key importance in determining the nuclearity of the final products.  相似文献   

6.
The progressive addition of anhydrous pyridine, (py), to a solution of [Rh(4)(CO)(12)] in CH(2)Cl(2) under CO, even at low temperature, results in immediate disproportionation to give cis-[Rh(CO)(2)py(2)][Rh(5)(CO)(15)]; further addition of pyridine results in the progressive replacement of CO's by py on the same apical rhodium in [Rh(5)(CO)(15)](-) to give cis-[Rh(CO)(2)py(2)][Rh(5)(CO)(15-x)py(x)] (x = 1, 2). The analogous reactions with 2,2'-bipyridine (bipy) give only [Rh(CO)(2)bipy][Rh(5)(CO)(13)bipy]. IR and low temperature, multinuclear NMR measurements have been used to establish the structures of all the above anions and the structures of [Rh(5)(CO)(13)(bipy)](-) and [Rh(5)(CO)(13)py(2)](-) are subtly different. Under N(2), [Rh(4)(CO)(12)] reacts with py to give [Rh(6)(CO)(16-y)py(y)] (y = 1, 2).  相似文献   

7.
The salts [M(CO)(4)][Sb(2)F(11)](2), M = Pd, Pt, are prepared by reductive carbonylation of Pd[Pd(SO(3)F)(6)], Pt(SO(3)F)(4) or PtF(6) in liquid SbF(5), or HF-SbF(5). The resulting moisture-sensitive, colorless solids are thermally stable up to 140 degrees C (M = Pd) or 200 degrees C (M = Pt). Their thermal decompositions are studied by differential scanning calorimetry (DSC). Single crystals of both salts are suitable for an X-ray diffraction study at 180 K. Both isostructural salts crystallize in the monoclinic space group P2(1)/c (No. 14). The unit cell volume of [Pt(CO)(4)][Sb(2)F(11)](2) is smaller than that of [Pd(CO)(4)][Sb(2)F(11)](2) by about 0.4%. The cations [M(CO)(4)](2+), M = Pd, Pt, are square planar with only very slight angular and out-of-plane deviations from D(4)(h)() symmetry. The interatomic distances and bond angles for both cations are essentially identical. The [Sb(2)F(11)](-) anions in [M(CO)(4)][Sb(2)F(11)](2,) M = Pd, Pt, are not symmetry-related, and both pairs differ in their Sb-F-Sb bridge angles and their dihedral angles. There are in each salt four to five secondary interionic C- -F contacts per CO group. Of these, two contacts per CO group are significantly shorter than the sum of the van der Waals radii by 0.58 - 0.37 A. In addition, structural, and spectroscopic details of recently synthesized [Rh(CO)(4)][Al(2)Cl(7)] are reported. The cations [Rh(CO)(4)](+) and [M(CO)(4)](2+), M = Pd, Pt, are characterized by IR and Raman spectroscopy. Of the 16 vibrational modes (13 observable, 3 inactive) 10 (Pd, Pt) or 9 (Rh), respectively, are found experimentally. The vibrational assignments are supported by DFT calculations, which provide in addition to band positions also intensities of IR bands and Raman signals as well as internal force constants for the cations. (13)C NMR measurements complete the characterization of the square planar metal carbonyl cations. The extensive characterization of [M(CO)(4)][Sb(2)F(11)](2), M = Pd, Pt, reported here, allows a comparison to linear and octahedral [M(CO)(n)()][Sb(2)F(11)](2) salts [M = Hg (n = 2); Fe, Ru, Os (n = 6)] and their derivatives, which permit a deeper understanding of M-CO bonding in the solid state for superelectrophilic cations with [Sb(2)F(11)](-) or [SbF(6)](-) as anions.  相似文献   

8.
Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-) complexes have been investigated using the B3LYP and the symmetry-adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) theoretical methods. All the dicarbonyl complexes have singlet ground electronic states with large singlet-triplet separations. Thermal dissociations of CO from the parent dicarbonyls are energetically unfavorable. CO thermal dissociation is an activation process for [Cl(2)Rh(CO)(2)](-) while it is a repulsive potential for CpM(CO)(2). The natures of the main excited states of CpM(CO)(2) and [Cl(2)Rh(CO)(2)](-) are found to be quite different. For [Cl(2)Rh(CO)(2)](-), all the strong transitions are identified to be metal to ligand CO charge transfer (MLCT) excitations. A significant feature of the excited states of CpM(CO)(2) is that both MLCT excitation and a ligand Cp to metal and CO charge transfer excitation are strongly mixed in the higher energy states with the latter having the largest oscillator strength. A competitive charge transfer excited state has therefore been identified theoretically for CpRh(CO)(2) and CpIr(CO)(2). The wavelength dependence of the quantum efficiencies for the photoreactions of CpM(CO)(2) reported by Lees et al. can be explained by the existence of two different types of excited states. The origin of the low quantum efficiencies for the C-H/S-H bond activations of CpM(CO)(2) can be attributed to the smaller proportion of the MLCT excitation in the higher energy states.  相似文献   

9.
Iron-sulfur clusters containing a singly or doubly NH.S hydrogen-bonded arenethiolate ligand, [Fe(4)S(4)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), [Fe(4)S(4){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), [Fe(2)S(2)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), and [Fe(2)S(2){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), were synthesized as models of bacterial [4Fe-4S] and plant-type [2Fe-2S] ferredoxins. The X-ray structures and IR spectra of (PPh(4))(2)[Fe(4)S(4){S-2,6-(CH(3)CONH)(2)C(6)H(3)}(4)].2CH(3)CN and (NEt(4))(2)[Fe(2)S(2){S-2,6-(t-BuCONH)(2)C(6)H(3)}(4)] indicate that the two amide NH groups at the o,o'-positions are directed to the thiolate sulfur atom and form double NH.S hydrogen bonds. The NH.S hydrogen bond contributes to the positive shift of the redox potential of not only (Fe(4)S(4))(+)/(Fe(4)S(4))(2+) but also (Fe(4)S(4))(2+)/(Fe(4)S(4))(3+) in the [4Fe-4S] clusters as well as (Fe(2)S(2))(2+)/(Fe(2)S(2))(3+) in the [2Fe-2S] clusters. The doubly NH.S hydrogen-bonded thiolate ligand effectively prevents the ligand exchange reaction by benzenethiol because the two amide NH groups stabilize the thiolate by protection from dissociation.  相似文献   

10.
The reaction of the potassium beta-diiminate KL (L = [{N(Ar)C(H)}(2)CPh](-); Ar = C(6)H(3)Pr(i)(2)-2,6) with PI(3) unexpectedly produced a phosphenium salt of the intermolecularly C,C-coupled ligand [P(I){N(Ar)CH}(2)C(C(6)H(4)-4)C(Ph)(CH[double bond, length as m-dash]NAr)(2)](+)[I(3)](-), while an intramolecularly N,N-coupled salt [N[upper bond 1 start](Ar)C(H)C(Ph)C(H)N[upper bond 1 end](Ar)](+)[I(5)](-) was isolated from KL + I(2).  相似文献   

11.
The heterotrinuclear chain complex Hg[Fe{Si(OMe)(3)}(CO)(3)(dppm-P)](2) (dppm = Ph(2)PCH(2)PPh(2)) 1 which has a transoid arrangement of the phosphine donors was used as a versatile chelating metallodiphosphine ligand owing to the easy rotation of its metal core about the Fe-Hg sigma-bonds. Its reaction with the labile Pt(0) olefin complex [Pt(C(7)H(10))(3)] yielded [HgPt{Si(OMe)(3)}Fe(2)(CO)(6){Si(OMe)(3)}(mu-dppm)(2)] 5 which resulted, after coordination of the dangling phosphine donors to Pt, from an unprecedented intramolecular rearrangement involving a very rare example of silyl ligand migration between two different metal centers, and the first one in metal cluster chemistry. The major structural differences observed between the heterometallic complexes obtained from 1 and d(10) Cu(I), Pd(0), or Pt(0) precursors have been established by X-ray diffraction. The bonding situation in the silyl migrated Pt complex 5 was analyzed and compared to those in the isoelectronic, but structurally distinct complexes obtained from Cu(I) and Pd(0) precursors, [Hg{Fe[Si(OMe)(3)](CO)(3)(mu-dppm)}(2)Cu](+) (2) and [Hg{Fe[Si(OMe)(3)](CO)(3)(mu-dppm)}(2)Pd] (4), respectively, by means of extended Hückel interaction diagrams. DFT calculations then allowed the energy minima associated with the three structures to be compared for 2, 4, and 5. All three minima are in close competition for the Pd complex 4, but silyl migration is favored by approximately 10 kcal mol(-)(1) for 5, mainly due to the more electronegative character of Pt with respect to Pd.  相似文献   

12.
A new series of Te-Ru-Cu carbonyl complexes was prepared by the reaction of K(2)TeO(3) with [Ru(3)(CO)(12)] in MeOH followed by treatment with PPh(4)X (X=Br, Cl) and [Cu(MeCN)(4)]BF(4) or CuX (X=Br, Cl) in MeCN. When the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was first treated with PPh(4)X followed by the addition of [Cu(MeCN)(4)]BF(4), doubly CuX-bridged Te(2)Ru(4)-based octahedral clusters [PPh(4)](2)[Te(2)Ru(4)(CO)(10)Cu(2)X(2)] (X=Br, [PPh(4)](2)[1]; X=Cl, [PPh(4)](2)[2]) were obtained. When the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was treated with PPh(4)X (X=Br, Cl) followed by the addition of CuX (X=Br, Cl), three different types of CuX-bridged Te-Ru carbonyl clusters were obtained. While the addition of PPh(4)Br or PPh(4)Cl followed by CuBr produced the doubly CuBr-bridged cluster 1, the addition of PPh(4)Cl followed by CuCl led to the formation of the Cu(4)Cl(2)-bridged bis-TeRu(5)-based octahedral cluster compound [PPh(4)](2)[{TeRu(5)(CO)(14)}(2)Cu(4)Cl(2)] ([PPh(4)](2)[3]). On the other hand, when the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was treated with PPh(4)Br followed by the addition of CuCl, the Cu(Br)CuCl-bridged Te(2)Ru(4)-based octahedral cluster chain polymer {[PPh(4)](2)(Te(2)Ru(4)(CO)(10)Cu(4)Br(2)Cl(2)).THF}(infinity) ({[PPh(4)](2)[4].THF}(infinity)) was produced. The chain polymer {[PPh(4)](2)[4].THF}(infinity) is the first ternary Te-Ru-Cu cluster and shows semiconducting behavior with a small energy gap of about 0.37 eV. It can be rationalized as resulting from aggregation of doubly CuX-bridged clusters 1 and 2 with two equivalents of CuCl or CuBr, respectively. The nature of clusters 1-4 and the formation and semiconducting properties of the polymer of 4 were further examined by molecular orbital calculations at the B3LYP level of density functional theory.  相似文献   

13.
The results of all-electron density functional calculations on the bimetallic cluster compounds [M(4){Fe(CO)(4)}(4)](4-) (M = Cu, Ag, Au) and on the corresponding naked species M(4)Fe(4) are reported. The trends within the triad have been investigated. The bare metal clusters exhibit a strong magnetization which is quenched on addition of CO ligands. The bonding in the bare clusters is different for the silver derivative compared to that of copper and gold, resulting in comparatively weaker Ag-Fe and Ag-Ag bonds. This can be rationalized in terms of the different d-sp mixing, which for Cu and Au is larger than for Ag. Relativistic effects act to increase the 4d-5s mixing in Ag and to strengthen the intermetallic bond with Fe. In the carbonylated clusters a charge transfer from the metal M (M = Cu, Ag, or Au) to the Fe(CO)(4) groups occurs so that the atoms M can be considered in a formal +I oxidation state, rationalizing the nearly square-planar geometry of the metal frame. In fact, the local coordination of the M atoms is almost linear, as expected for complexes of M(I). The addition of extra electrons results in a stabilization of the clusters, indicating the electron-deficient nature of these compounds. Similar features have been found for the largest cluster synthesized so far for this class of compounds, [Ag(13){Fe(CO)(4)}(8)](n)(-), (n = 0-5). The nature and localization of the unpaired electron in the tetraanion is also discussed.  相似文献   

14.
[{mu-(Pyridazine-N(1):N(2))}Fe(2)(mu-CO)(CO)(6)](1) reacts with aryllithium reagents, ArLi (Ar = C(6)H(5), m-CH(3)C(6)H(4)) followed by treatment with Me(3)SiCl to give the novel pyridazine-coordinated diiron bridging siloxycarbene complexes [(C(4)H(4)N(2))Fe(2){mu-C(OSiMe(3))Ar}(CO)(6)](2, Ar = C(6)H(5); 3, Ar =m-CH(3)C(6)H(4)). Complex 2 reacts with HBF(4).Et(2)O at low temperature to yield a cationic bridging carbyne complex [(C(4)H(4)N(2))Fe(2)(mu-CC(6)H(5))(CO)(6)]BF(4)(4). Cationic 4 reacts with NaBH(4) in THF at low temperature to afford the diiron bridging arylcarbene complex [(C(4)H(4)N(2))Fe(2){mu-C(H)C(6)H(5)}(CO)(6)](5). Unexpectedly, the reaction of 4 with NaSCH(3) under similar conditions gave the bridging arylcarbene complex 5 and a carbonyl-coordinated diiron bridging carbene complex [Fe(2){mu-C(SCH(3))C(6)H(5)}(CO)(7)](6), while the reaction of NaSC(6)H(4)CH(3)-p with 4 affords the expected bridging arylthiocarbene complex [(C(4)H(4)N(2))Fe(2){mu-C(SC(6)H(4)CH(3)-p)C(6)H(5)}(CO)(6)](7), which can be converted into a novel diiron bridging carbyne complex with a thiolato-bridged ligand, [Fe(2)(mu-CC(6)H(5))(mu-SC(6)H(4)CH(3)-p)(CO)(6)](8). Cationic can also react with the carbonylmetal anionic compound Na(2)[Fe(CO)(4)] to yield complex 5, while the reactions of 4 with carbonylmetal anionic compounds Na[M(CO)(5)(CN)](M = Cr, Mo, W) produce the diiron bridging aryl(pentacarbonylcyanometal)carbene complexes [(C(4)H(4)N(2))Fe(2)-{mu-C(C(6)H(5))NCM(CO)(5)}(CO)(6)](9, M = Cr; 10, M = Mo; 11, M = W). The structures of complexes 2, 5, 6, 8, and 9 have been established by X-ray diffraction studies.  相似文献   

15.
Using a unique three-solvent biphasic method, we have prepared and characterized three new fully conjugated, chalcogen-rich, bridged copper(II) complexes for the preparation of molecular conductors and magnetic materials, having the general formula (Bu(4)N)(2){tto[Cu(L)](2)} (tto = C(2)S(4)(2)(-) = tetrathiooxalato; L = mnt = C(4)N(2)S(2)(2)(-) = 1,2-dicyanoethene-1,2-dithiolato for complex 2, dsit = C(3)Se(2)S(3)(2)(-) = 2-thioxo-1,3-dithiole-4,5-diselenolato for complex 3, dmid = C(3)OS(4)(2)(-) = 2-oxo-1,3-dithiole-4,5-dithiolato for complex 4a). The single-crystal X-ray structures of 2 and 3 have been determined: 2, (Bu(4)N)(2){tto[Cu(mnt)](2)}, monoclinic, space group C2/m, a = 19.549(4) ?, b = 13.519(3) ?, c = 10.162(2) ?, beta = 90.33(1) degrees, Z = 2; 3, (Bu(4)N)(2){tto[Cu(dsit)](2)}, monoclinic, space group P2(1)/c, a = 9.903(1) ?, b = 15.589(1) ?, c = 18.218(1) ?, beta = 90.40(1) degrees, Z = 2. Complex 2 displays perfect planarity, while 3 shows a slight tetrahedral distortion at the metal centers, resulting in a dihedral angle of 24.86(3) degrees. Cyclic voltammetry of (Bu(4)N)(2){tto[Cu(mnt)](2)} (2), (Bu(4)N)(2){tto[Cu(dsit)](2)} (3), and (Bu(4)N)(2){tto[Cu(dmid)](2)} (4a) shows each complex to exhibit two reversible redox processes which can be attributed to {tto[Cu(L)](2)}(2)(-) right arrow over left arrow tto[Cu(L)](2)}(-) and {tto[Cu(L)](2)}(1)(-) right arrow over left arrow {tto[Cu(L)](2)}(0) couples. The structural and electronic properties of 2, 3, and 4a will be compared to those of the recently communicated analogous complex (Bu(4)N)(2){tto[Cu(dmit)](2)} (1).  相似文献   

16.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

17.
Two novel heterometallic octahedral clusters [Rh(4)Pt(2)(CO)(11)(dppm)(2)](1) and [Ru(2)Rh(2)Pt(2)(CO)(12)(dppm)(2)](2) were synthesized by the reaction of [Rh(2)Pt(2)(CO)(6)(dppm)(2)] with [Rh(6)(CO)(14)(NCMe)(2)] and Ru(3)(CO)(12), respectively. Solid state structures of 1 and 2 have been established by a single crystal X-ray diffraction study. Two dppm ligands in 1 are bonded to one platinum and three rhodium atoms, which form an equatorial plane of the Rh(4)Pt(2) octahedron. Two rhodium and two platinum atoms bound to the diphosphine ligands in 2 are nonplanar to give an octahedral C2 symmetric Ru(2)Rh(2)Pt(2)(dppm)2 framework. The (31)P NMR investigation of and (1D, (31)P COSY, (31)P-[(103)Rh] HMQC) and simulation of 1D spectral patterns showed that in both clusters the structures of the M(6)(PP)(2) fragments found in the solid state are maintained in solution.  相似文献   

18.
Reactions of copper(II) with 3-phenylhydrazopentane-2,4-diones X-2-C(6)H(4)-NHN=C{C(=O)CH(3)}(2) bearing a substituent in the ortho-position [X = OH (H(2)L(1)) 1, AsO(3)H(2) (H(3)L(2)) 2, Cl (HL(3)) 3, SO(3)H (H(2)L(4)) 4, COOCH(3) (HL(5)) 5, COOH (H(2)L(6)) 6, NO(2) (HL(7)) 7 or H (HL(8)) 8] lead to a variety of complexes including the monomeric [CuL(4)(H(2)O)(2)]·H(2)O 10, [CuL(4)(H(2)O)(2)] 11 and [Cu(HL(4))(2)(H(2)O)(4)] 12, the dimeric [Cu(2)(H(2)O)(2)(μ-HL(2))(2)] 9 and the polymeric [Cu(μ-L(6))](n)] 13 ones, often bearing two fused six-membered metallacycles. Complexes 10-12 can interconvert, depending on pH and temperature, whereas the Cu(II) reactions with 4 in the presence of cyanoguanidine or imidazole (im) afford the monomeric compound [Cu(H(2)O)(4){NCNC(NH(2))(2)}(2)](HL(4))(2)·6H(2)O 14 and the heteroligand polymer [Cu(μ-L(4))(im)](n)15, respectively. The compounds were characterized by single crystal X-ray diffraction (complexes), electrochemical and thermogravimetric studies, as well as elemental analysis, IR, (1)H and (13)C NMR spectroscopies (diones) and ESI-MS. The effects of the substituents in 1-8 on the HOMO-LUMO gap and the relative stability of the model compounds [Cu(OH)(L(8))(H(2)O)]·H(2)O, [Cu(L(1))(H(2)O)(2)]·H(2)O and [Cu(L(4))(H(2)O)(2)]·H(2)O are discussed on the basis of DFT calculations that show the stabilization follows the order: two fused 6-membered > two fused 6-membered/5-membered > one 6-membered metallacycles. Complexes 9, 10, 12 and 13 act as catalyst precursors for the peroxidative oxidation (with H(2)O(2)) of cyclohexane to cyclohexanol and cyclohexanone, in MeCN/H(2)O (total yields of ca. 20% with TONs up to 566), under mild conditions.  相似文献   

19.
The condensation reactions of the dimer [ClP(micro-NR)](2) with organic diacids [LL(H)(2)], possessing linear orientations of their organic groups, result in the formation of phospha(III)zane macrocyles of the type [{P(mu-NR)}(2)(LL)](n) of various sizes. The series of macrocycles [{P(mu-N(t)Bu)}(2){1,5-(NH)(2)C(10)H(6)}](3), [{P(mu-NCy)}(2)(1,5-O(2)C(10)H(6))](n) [n = 3; n = 4], [{P(mu-N(t)Bu)}(2){1,4-(NH)(2)C(6)H(4)}](4), [{P(mu-N(t)Bu)}(2)(1,4-O(2)C(6)H(4))], [{P(mu-NCy)}(2)(1,4-O(2)C(6)H(4))](3) and [{P(mu-N(t)Bu)}(2){(NH)C(6)H(4)OC(6)H(4)(NH)}](2) can be related to classical organic frameworks, like calixarenes.  相似文献   

20.
The new [Pt(13)(CO)(12){Cd(5)(μ-Br)(5)Br(2)(dmf)(3)}(2)](2-) and [Pt(19)(CO)(17){Cd(5)(μ-Br)(5)Br(3)(Me(2)CO)(2)}{Cd(5)(μ-Br)(5)Br(Me(2)CO)(4)}](2-) clusters have been obtained in good yields by reaction of [Pt(12)(CO)(24)](2-) with CdBr(2)·H(2)O in dmf at 90 °C and structurally characterized by X-ray diffraction. Their structures consist of a Pt-centered Pt(13)(CO)(12) icosahedron and a Pt(19)(CO)(17) interpenetrated double icosahedron, respectively, decorated by two Cd(5)(μ-Br)(5)Br(5-x)(solvent)(x) rings. Their surface decoration may be related to that of Au-Fe-CO clusters as well as to the staple motifs stabilizing gold-thiolates nanoclusters. An oversimplified and unifying approach to interpret their electron count is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号