首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The manipulation of natural product biosynthetic pathways is a powerful means of expanding the chemical diversity of bioactive molecules. 2,5‐diketopiperazines (2,5‐DKPs) have been widely developed by medicinal chemists, but their biological production is yet to be exploited. We introduce an in vivo method for incorporating non‐canonical amino acids (ncAAs) into 2,5‐DKPs using cyclodipeptide synthases (CDPSs), the enzymes responsible for scaffold assembly in many 2,5‐DKP biosynthetic pathways. CDPSs use aminoacyl‐tRNAs as substrates. We exploited the natural ability of aminoacyl‐tRNA synthetases to load ncAAs onto tRNAs. We found 26 ncAAs to be usable as substrates by CDPSs, leading to the enzymatic production of approximately 200 non‐canonical cyclodipeptides. CDPSs constitute an efficient enzymatic tool for the synthesis of highly diverse 2,5‐DKPs. Such diversity could be further expanded, for example, by using various cyclodipeptide‐tailoring enzymes found in 2,5‐DKP biosynthetic pathways.  相似文献   

2.
Cyclodipeptide synthases (CDPSs) are small enzymes structurally related to class-I aminoacyl-tRNA synthetases (aaRSs). They divert aminoacylated tRNAs from their canonical role in ribosomal protein synthesis, for cyclodipeptide formation. All the CDPSs experimentally characterized to date are?bacterial. We show here that a predicted CDPS from the sea anemone Nematostella vectensis is an active CDPS catalyzing the formation of various cyclodipeptides, preferentially containing tryptophan. Our findings demonstrate that eukaryotes encode active CDPSs and suggest that all CDPSs have?a similar aminoacyl-tRNA synthetase-like architecture and ping-pong mechanism. They also raise questions about the biological roles of the cyclodipeptides produced in bacteria and eukaryotes.  相似文献   

3.
Regioselective enolate formation, followed by stereoselective electrophilic quenching of unsymmetrical proline-derived diketopiperazines (DKPs), enabled the synthesis of variously substituted DKPs, including one substrate which could be further substituted and cyclised to give the bicyclo[2.2.2]diazaoctane core structure present in paraherquamide and stephacidin natural products.  相似文献   

4.
2,5-diketopiperazines (DKPs) are cyclic dipeptides ubiquitously found in nature. In particular, cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro) are frequently detected in many microbial cultures. Each of these DKPs has four possible stereoisomers due to the presence of two chirality centers. However, absolute configurations of natural DKPs are often ambiguous due to the lack of a simple, sensitive, and reproducible method for stereochemical assignment. This is an important problem because stereochemistry is a key determinant of biological activity. Here, we report a synthetic DKP library containing all stereoisomers of cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro). The library was subjected to spectroscopic characterization using mass spectrometry, NMR, and electronic circular dichroism (ECD). It turned out that ECD can clearly differentiate DKP stereoisomers. Thus, our ECD dataset can serve as a reference for unambiguous stereochemical assignment of cyclo(Phe-Pro), cyclo(Leu-Pro), and cyclo(Val-Pro) samples from natural sources. The DKP library was also subjected to a biological screening using assays for E. coli growth and biofilm formation, which revealed distinct biological effects of cyclo(D-Phe-L-Pro).  相似文献   

5.
Microbes are routinely engineered to synthesize high-value chemicals from renewable materials through synthetic biology and metabolic engineering. Microbial biosynthesis often relies on expression of heterologous biosynthetic pathways, i.e., enzymes transplanted from foreign organisms. Metallocluster enzymes are one of the most ubiquitous family of enzymes involved in natural product biosynthesis and are of great biotechnological importance. However, the functional expression of recombinant metallocluster enzymes in live cells is often challenging and represents a major bottleneck. The activity of metallocluster enzymes requires essential supporting pathways, involved in protein maturation, electron supply, and/or enzyme stability. Proper function of these supporting pathways involves specific protein–protein interactions that remain poorly characterized and are often overlooked by traditional synthetic biology approaches. Consequently, engineering approaches that focus on enzymatic expression and carbon flux alone often overlook the particular needs of metallocluster enzymes. This review highlights the biotechnological relevance of metallocluster enzymes and discusses novel synthetic biology strategies to advance their industrial application, with a particular focus on iron-sulfur cluster enzymes. Strategies to enable functional heterologous expression and enhance recombinant metallocluster enzyme activity in industrial hosts include: (1) optimizing specific maturation pathways; (2) improving catalytic stability; and (3) enhancing electron transfer. In addition, we suggest future directions for developing microbial cell factories that rely on metallocluster enzyme catalysis.  相似文献   

6.
The substitution of symmetrical N-protected diketopiperazines (DKPs) via enolate intermediates has been studied. The enolate reactions were highly diastereocontrolled, leading to enantiopure DKP products if chiral amino acid precursors were employed, and giving racemic products, starting with centrosymmetric DKPs, even when a chiral lithium amide base was used to generate the lithium enolate. With unsymmetrical DKPs derived from proline and either alanine, phenylalanine or valine, the enolate substitution occurred with high regio- and stereoselectivity on the proline residue. This enabled the synthesis of substituted DKPs that could be cyclised via cationic processes to give the bicyclo[2.2.2]diazaoctane core structure present in paraherquamide and stephacidin natural products.  相似文献   

7.
Here we prepared and evaluated two libraries of mono-N-methylated and di-N-methylated diketopiperazines (DKPs) by parallel artificial membrane permeability assay and immobilized artificial membrane chromatography in order to obtain information on the features that govern the passage of peptidic molecules across the blood-brain barrier (BBB) by passive diffusion. On the basis of the results from these two libraries, we prepared and evaluated several DKP-baicalin and DKP-dopamine constructs. The DKPs or cyclic dipeptide scaffolds can be considered a novel family of brain delivery systems (BBB-shuttles) to transport to the brain drugs and other cargos that cannot cross the BBB unaided.  相似文献   

8.
Diketopiperazines (DKPs) corresponding to cyclic dipeptides have been reported to exhibit antimicrobial, antitumor, antimutagenic and antiviral properties. These compounds are commonly isolated from microorganisms and sponges and from a variety of tissues and body fluids. In this work, we used electrospray ionization tandem mass spectrometry (ESI-MS/MS) to investigate the fragmentation of a series of DKPs previously isolated from Aspergillus fumigatus, which exhibit the same structural core. Loss of CO directly from the protonated molecule was found to be a fragmentation process common to all the compounds analyzed. However, our results revealed a series of ions that are diagnostic for the substituents at C(4) and C(9). In order to rationalize the differences in the fragmentation pathways of substituted and nonsubstituted DKPs, the relative Gibbs energies (DeltaG) of the product ions and intermediate ions were estimated using the B3LYP/6-31 + + G(d,p) model. The data reported here can be used for the structural elucidation of DKPs from low sample amounts, as an alternative to NMR.  相似文献   

9.
A general and efficient method for the synthesis of unsymmetrical 1,3,4,6-tetrasubstituted 2,5-diketo- piperazines (DKPs) is described. Cyclization of N-amide alkylated dipeptide methyl esters, followed by alkylation, furnished the corresponding tetrasubstituted DKPs in good overall yields. The influence of steric hindrance in the alkylation reactions appeared to be of lesser importance as long as reactive alkylating agents were used. Furthermore, we have demonstrated the use of tetrasubstituted DKPs as a scaffold for further chemical manipulations to produce novel DKPs with desired properties.  相似文献   

10.
Covering: 1985 to 2012Diverse oxygenation patterns of natural products generated by secondary metabolic pathways in microorganisms and plants are largely achieved through the tailoring reactions catalysed by cytochrome P450 enzymes (P450s). P450s are a large family of oxidative hemoproteins found in all life forms from prokaryotes to humans. Understanding the reactivity and selectivity of these fascinating C-H bond-activating catalysts will advance their use in generating valuable pharmaceuticals and products for medicine, agriculture and industry. A major strength of this P450 group is its set of established enzyme-substrate relationships, the source of the most detailed knowledge on how P450 enzymes work. Engineering microbial-derived P450 enzymes to accommodate alternative substrates and add new functions continues to be an important near- and long-term practical goal driving the structural characterization of these molecules. Understanding the natural evolution of P450 structure-function should accelerate metabolic engineering and directed evolutionary approaches to enhance diversification of natural product structures and other biosynthetic applications.  相似文献   

11.
Pan MH  Ho CT 《Chemical Society reviews》2008,37(11):2558-2574
Chemoprevention, a relatively new and promising strategy to prevent cancer, is defined as the use of natural dietary compounds and/or synthetic substances to block, inhibit, reverse, or retard the process of carcinogenesis. The chemopreventive effects elicited by these natural dietary compounds are believed to include antioxidative, anti-inflammatory activity, induction of phase II enzymes, apoptosis, and cell cycle arrest. Many mechanisms have been shown to account for the anticarcinogenic actions of natural dietary compounds; attention has recently been focused on intracellular-signaling cascades as common molecular targets for various chemopreventive natural dietary compounds. In this critical review, we will summarize current knowledge on natural dietary compounds that act through the signaling pathways and modulate gene expression to induce detoxifying enzymes, programmed cell death, anti-inflammatory, and anti-proliferative effects, thus providing evidence for these substances in cancer chemopreventive action (128 references).  相似文献   

12.
[reaction: see text] Monoenolates of C(2)-symmetric, proline-derived piperazine-2,5-diones were generated and trapped with a variety of electrophiles to produce, in a highly diastereoselective fashion, functionalized diketopiperazines (DKPs). These reactions provide the basis for an asymmetric, desymmetrization strategy toward the marine alkaloids phakellstatin and phakellin. The relative stereochemistry of the functionalized DKPs was confirmed by single-crystal X-ray analysis and/or NOE experiments. Bis-functionalization of the DKPs was also found to proceed with high levels of diastereoselectivity.  相似文献   

13.
王德心  韩香  龚喜  冯鹤鹤 《有机化学》2008,28(4):549-573
对环肽进行了分类, 并对具代表性的经典型、DKP (Diketopiperazine, 哌嗪二酮)型、醚桥型、烯桥型、单硫及多硫醚型、刚性桥型、仲(叔)胺型、Mannich碱型、联苯型及Freidinger型环肽的合成方法逐一进行了描述.  相似文献   

14.
Iron-sulfur proteins are very versatile biological entities for which many new functions are continuously being unravelled. This review focus on their role in the initiation of radical chemistry, with special emphasis on radical-SAM enzymes, since several members of the family catalyse key steps in the biosynthetic pathways of cofactors such as biotin, lipoate, thiamine, heme and the molybdenum cofactor. It will also include other examples to show the chemical logic which is emerging from the presently available data on this family of enzymes. The common step in all the (quite different) reactions described here is the monoelectronic reductive cleavage of SAM by a reduced [4Fe-4S](1+) cluster, producing methionine and a highly oxidising deoxyadenosyl radical, which can initiate chemically difficult reactions. This set of enzymes, which represent a means to perform oxidation under reductive conditions, are often present in anaerobic organisms. Some other, non-SAM-dependent, radical reactions obeying the same chemical logic are also covered.  相似文献   

15.
16.
Open chain Cbz‐L ‐aa1‐L ‐Pro‐Bt (Bt=benzotriazole) sequences were converted into either the corresponding trans‐ or cis‐fused 2,5‐diketopiperazines (DKPs) depending on the reaction conditions. Thermodynamic tandem cyclization/epimerization afforded selectively the corresponding trans‐DKPs (69–75 %). Complementarily, tandem deprotection/cyclization led to the cis‐DKPs (65–72 %). A representative set of proline‐containing cis‐ and trans‐DKPs has been prepared. A mechanistic investigation, based on chiral HPLC, kinetics, and computational studies enabled a rationalization of the results.  相似文献   

17.
Two general solid-phase methods for the synthesis of a new class of 2,5-diketopiperazines (DKPs) containing the trans-4-hydroxy-L-proline amino acid residue (Hyp) have been developed. An N-protected hydroxyproline methyl ester was linked through the hydroxyl function to the Ellman resin. The synthesis procedures were conceived to enable a sequence of Hyp alkylation, Hyp N-acylation, cyclization, and amide bond alkylation. Up to three different centers of molecular diversity were introduced around the DKP scaffold. Highly functionalized bicyclic compounds were obtained in good yield and purity. The alkylation of hydroxyproline alpha CH was performed without control of the diastereoselectivity. During the final alkylation of the backbone, amide bond epimerization at the alpha-carbon atoms of the two amino acid residues was observed. The structures of representative DKPs were elucidated with multidimensional NMR experiments. The described reaction pathways can be applied to the identification of heterocyclic molecule inhibitors to diverse enzyme targets.  相似文献   

18.
Bacteria communicate with each other by a process termed “quorum sensing” (QS), and diffusible, low-molecular-weight chemicals, called signal molecules, are used as the communication languages. In cell-free Burkholderia cepacia CF-66 culture supernatants, five compounds suspected of being signal molecules were identified. The gene (cepI) related with AHLs synthesis were not detected by polymerase chain reaction (PCR) using specific primers. Gas chromatography–mass spectrometry (GC–MS) revealed that these compounds were not AHLs but the diketopiperazines (DKPs) cyclo(Pro–Phe), cyclo(Pro–Tyr), cyclo(Ala–Val), cyclo(Pro–Leu), and cyclo(Pro–Val), all of which were both d and l-type. Four kinds of DKPs had been isolated from other Gram-negative bacteria, but the other was a novel kind discovered in CF-66, and l-cyclo (Pro–Phe) was quantified by GC–MS. It was found that exogenous DKPs had a negative effect on the candidacidal activity of the culture supernatant extracts.  相似文献   

19.
Cyclization of linear dipeptidyl precursors derived from nonribosomal peptide synthetases (NRPSs) into 2,5‐diketopiperazines (DKPs) is a crucial step in the biosynthesis of a large number of bioactive natural products. However, the mechanism of DKP formation in fungi has remained unclear, despite extensive studies of their biosyntheses. Here we show that DKP formation en route to the fungal virulence factor gliotoxin requires a seemingly extraneous couplet of condensation (C) and thiolation (T) domains in the NRPS GliP. In vivo truncation of GliP to remove the CT couplet or just the T domain abrogated production of gliotoxin and all other gli pathway metabolites. Point mutation of conserved active sites in the C and T domains diminished cyclization activity of GliP in vitro and abolished gliotoxin biosynthesis in vivo. Verified NRPSs of other fungal DKPs terminate with similar CT domain couplets, suggesting a conserved strategy for DKP biosynthesis by fungal NRPSs.  相似文献   

20.
Chemotherapeutic drugs for cancer treatment have been traditionally originated by the isolation of natural products from different environmental niches, by chemical synthesis or by a combination of both approaches thus generating semisynthetic drugs. In the last years, a number of gene clusters from several antitumor biosynthetic pathways, mainly produced by actinomycetes and belonging to the polyketides family, are being characterized. Genetic manipulation of these antitumor biosynthetic pathways will offer in the near future an alternative for the generation of novel antitumor derivatives and thus complementing current methods for obtaining novel anticancer drugs. Novel antitumor derivatives have been produced by targetted gene disruption and heterologous expression of single (or a few) gene(s) in another hosts or by combining genes from different, but structurally related, biosynthetic pathways ("combinatorial biosynthesis"). These strategies take advantage from the "relaxed substrate specificity" that characterize secondary metabolism enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号