首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
储开龙  王孜博  周娇娇  江华 《中国物理 B》2017,26(6):67202-067202
The transport study of graphene based junctions has become one of the focuses in graphene research. There are two stacking configurations for monolayer–bilayer–monolayer graphene planar junctions. One is the two monolayer graphene contacting the same side of the bilayer graphene, and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene. In this paper, according to the Landauer–Büttiker formula, we study the transport properties of these two configurations. The influences of the local gate potential in each part, the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained. We find the conductances of the two configurations can be manipulated by all of these effects. Especially, one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene. The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.  相似文献   

3.
We studied and compared the transport properties of charge carriers in bilayer graphene, monolayer graphene, and the conventional semiconductors (the two-dimensional electron gas (2DEG)). It is elucidated that the normal incidence transmission in the bilayer graphene is identical to that in the 2DEG but totally different from that in the monolayer graphene. However, resonant peaks appear in the non-normal incidence transmission profile for a high barrier in the bilayer graphene, which do not occur in the 2DEG. Furthermore, there are tunneling and forbidden regions in the transmission spectrum for each material, and the division of the two regions has been given in the work. The tunneling region covers a wide range of the incident energy for the two graphene systems, but only exists under specific conditions for the 2DEG. The counterparts of the transmission in the conductance profile are also given for the three materials, which may be used as high-performance devices based on the bilayer graphene.  相似文献   

4.
Double-gated graphene devices provide an important platform for understanding electrical and optical properties of graphene. Here we present transport measurements of single layer, bilayer and trilayer graphene devices with suspended top gates. In zero magnetic fields, we observe formation of pnp junctions with tunable polarity and charge densities, as well as a tunable band gap in bilayer graphene and a tunable band overlap in trilayer graphene. In high magnetic fields, the devices’ conductance are quantized at integer and fractional values of conductance quantum, and the data are in good agreement with a model based on edge state equilibration at pn interfaces.  相似文献   

5.
We use the T-matrix approximation to analyze the effect of a localized impurity on the local density of states in monolayer and bilayer graphene. For monolayer graphene the Friedel oscillations generated by intranodal scattering obey an inverse-square law, while the internodal ones obey an inverse law. In the Fourier transform this translates into a filled circle of high intensity in the center of the Brillouin zone, and empty circular contours around its corners. For bilayer graphene both types of oscillations obey an inverse law.  相似文献   

6.
The hybrid graphene-quantum dot devices can potentially be used to tailor the electronic, optical, and chemical properties of graphene. Here, the low temperature electronic transport properties of bilayer graphene decorated with PbS colloid quantum dots(CQDs) have been investigated in the weak or strong magnetic fields. The presence of the CQDs introduces additional scattering potentials that alter the magnetotransport properties of the graphene layers, leading to the observation of a new set of magnetoconductance oscillations near zero magnetic field as well as the high-field quantum Hall regime.The results bring about a new strategy for exploring the quantum interference effects in two-dimensional materials which are sensitive to the surrounding electrostatic environment, and open up a new gateway for exploring the graphene sensing with quantum interference effects.  相似文献   

7.
Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features.We report on monolayer and bilayer epitaxial graphene field-effect transistors(GFETs)fabricated on SiC substrates.Compared with monolayer GFETs,the bilayer GFETs exhibit a significant improvement in dc characteristics,including increasing current density Ids,improved transconductance g_m,reduced sheet resistance R_(on),and current saturation.The improved electrical properties and tunable bandgap in the bilayer graphene lead to the excellent dc performance of the bilayer GFETs.Furthermore,the improved dc characteristics enhance a better rf performance for bilayer graphene devices,demonstrating that the quasifree-standing bilayer graphene on SiC substrates has a great application potential for the future graphene-based electronics.  相似文献   

8.
The electronic and transport properties of monolayer and AB-stacked bilayer zigzag graphene nanoribbons subject to the influences of a magnetic field are investigated theoretically. We demonstrate that the magnetic confinement and the size effect affect the electronic properties competitively. In the limit of a strong magnetic field, the magnetic length is much smaller than the ribbon width, and the bulk electrons are confined solely by the magnetic potential. Their properties are independent of the width, and the Landau levels appear. On the other hand, the size effect dominates in the case of narrow ribbons. In addition, the dispersion relations rely sensitively on the interlayer interactions. Such interactions will modify the subband curvature, create additional band-edge states, change the subband spacing or the energy gap, and separate the partial flat bands. The band structures are symmetric or asymmetric about the Fermi energy for monolayer or bilayer nanoribbons, respectively. The chemical-potential-dependent electrical and thermal conductance exhibits a stepwise increase behaviour. The competition between the magnetic confinement and the size effect will also be reflected in the transport properties. The features of the conductance are found to be strongly dependent on the field strength, number of layers, interlayer interactions, and temperature.  相似文献   

9.
The present work deals with the analysis of the quasi-particle spectrum and the density of states of monolayer and bilayer (AB- and AA-stacked) graphene. The tight binding Hamiltonian containing nearest-neighbor and next-nearest neighbor hopping and onsite Coulomb interaction within two triangular sub-lattice approach for monolayer graphene, along-with the interlayer coupling parameter for bilayer graphene has been employed. The expressions of quasi-particle energies and the density of states (DOS) are obtained within mean-field Green’s function equations of motion approach. It is found that next-nearest-neighbour intralayer hopping introduce asymmetry in the electronic states above and below the zero point energy in monolayer and bilayer (AA- and AB-stacked) graphene. The behavior of electronic states in monolayer and bilayer graphene is different and highly influenced by interlayer coupling and Coulomb interaction. It has been pointed out that the interlayer coupling splits the quasi-particle peak in density of states while the Coulomb interaction suppresses the bilayer splitting and generates a gap at Fermi level in both AA- and AB-stacked bilayer graphene. The theoretically obtained quasi-particle energies and density of states in monolayer and bilayer (AA- and AB-stacked) graphene has been viewed in terms of recent ARPES and STM data on these systems.  相似文献   

10.
陈英良  冯小波  侯德东 《物理学报》2013,62(18):187301-187301
采用紧束缚模型分别描述单层、双层石墨烯的能带结构, 利用光子-电子相互作用的二阶微扰理论分别计算单光子和双光子吸收系数.计算结果表明: 单层石墨烯单光子吸收系数为常数, 约为6.8×107 m-1, 即单层石墨烯对入射光的吸收率约为2.3%; 双层石墨烯的单光子吸收比单层石墨烯的单光子吸收强, 且随入射光波长呈分段性变化.单层石墨烯的双光子吸收系数与波长λ4成正比; 双层石墨烯双光子吸收系数在红外波段(~ 3100 nm处)有一个很强的共振吸收峰. 研究结果可为石墨烯材料在光电子器件的研究和制作方面提供指导. 关键词: 石墨烯 光学吸收 紧束缚模型  相似文献   

11.
Graphene–oxide hybrid structures offer the opportunity to combine the versatile functionalities of oxides with the excellent electronic transport in graphene. Understanding and controlling how the dielectric environment affects the intrinsic properties of graphene is also critical to fundamental studies and technological development of graphene. Here we review our recent effort on understanding the transport properties of graphene interfaced with ferroelectric Pb(Zr,Ti)O3 (PZT) and high-κ HfO2. Graphene field effect devices prepared on high-quality single crystal PZT substrates exhibit up to tenfold increases in mobility compared to SiO2-gated devices. An unusual and robust resistance hysteresis is observed in these samples, which is attributed to the complex surface chemistry of the ferroelectric. Surface polar optical phonons of oxides in graphene transistors play an important role in the device performance. We review their effects on mobility and the high source-drain bias saturation current of graphene, which are crucial for developing graphene-based room temperature high-speed amplifiers. Oxides also introduce scattering sources that limit the low temperature electron mobility in graphene. We present a comprehensive study of the transport and quantum scattering times to differentiate various scattering scenarios and quantitatively evaluate the density and distribution of charged impurities and the effect of dielectric screening. Our results can facilitate the design of multifunctional nano-devices utilizing graphene–oxide hybrid structures.  相似文献   

12.
Iron-phthalocyanine (FePc) molecules have been adsorbed on a graphene sheet prepared on the Ir(111) surface. The FePc molecules are flat-lying on graphene, as determined by near-edge X-ray absorption fine-structure, constituting a sub-nanometer thick molecular array at the single-layer coverage. The flat FePc single-layer presents a weak interaction of the organic macrocycle with the graphene surface and Ir subsurface substrate. Further FePc deposition on top of the first flat single-layer determines a three-dimensional island growth with varying molecular orientation.  相似文献   

13.
J A Crosse  Pilkyung Moon 《中国物理 B》2021,30(7):77803-077803
We study the magneto-optical conductivity of a number of van der Waals heterostructures, namely, twisted bilayer graphene, AB-AB and AB-BA stacked twisted double bilayer graphene and monolayer graphene and AB-stacked bilayer graphene on hexagonal boron nitride. As the magnetic field increases, the absorption spectrum exhibits a self-similar recursive pattern reflecting the fractal nature of the energy spectrum. Whilst twisted bilayer graphene displays only weak circular dichroism, the other four structures display strong circular dichroism with monolayer graphene and AB-stacked bilayer graphene on hexagonal boron nitride being particularly pronounced owing to strong inversion symmetry breaking properties of the hexagonal boron nitride layer. As the left and right circularly polarized light interact with these structures differently, plane-polarized incident light undergoes a Faraday rotation and gains an ellipticity when transmitted. The size of the respective angles is on the order of a degree.  相似文献   

14.
We describe the weak localization correction to conductivity in ultra-thin graphene films, taking into account disorder scattering and the influence of trigonal warping of the Fermi surface. A possible manifestation of the chiral nature of electrons in the localization properties is hampered by trigonal warping, resulting in a suppression of the weak anti-localization effect in monolayer graphene and of weak localization in bilayer graphene. Intervalley scattering due to atomically sharp scatterers in a realistic graphene sheet or by edges in a narrow wire tends to restore weak localization resulting in negative magnetoresistance in both materials.  相似文献   

15.
孙家涛  潘理达  胡昊  杜世萱  高鸿钧 《中国物理 B》2010,19(9):97809-097809
We investigate the electronic structures of one and two monolayer iron phthalocyanine (FePc) molecules on Au(111) surfaces. The first monolayer FePc is lying flat on the Au(111) substrate, and the second monolayer FePc is tilted at~15° relative to the substrate plane along the nearest neighbour [101ˉ] direction with a lobe downward to the central hole of the unit cell in the first layer. The structural information obtained by first-principles calculations is in agreement with the experiment results. Furthermore, it is demonstrated that the electronic structures of FePc molecules in one-monolayer FePc/Au(111) system are perturbed significantly, while the electronic structures of FePc molecules in the second monolayer in two-monolayer FePc/Au(111) system remain almost unchanged due to the screening of the buffer layer on Au(111).  相似文献   

16.
Pei-Sen Li 《中国物理 B》2022,31(3):38502-038502
For convenient and efficient verification of the magnetoresistance effect in graphene spintronic devices, vertical magnetic junctions with monolayer graphene sandwiched between two NiFe electrodes are fabricated by a relatively simple way of transferring CVD graphene onto the bottom ferromagnetic stripes. The anisotropic magnetoresistance contribution is excluded by the experimental result of magnetoresistance (MR) ratio dependence on the magnetic field direction. The spin-dependent transport measurement reveals two distinct resistance states switching under an in-plane sweeping magnetic field. A magnetoresistance ratio of about 0.17 % is obtained at room temperature and it shows a typical monotonic downward trend with the bias current increasing. This bias dependence of MR further verifies that the spin transport signal in our device is not from the anisotropic magnetoresistance. Meanwhile, the IV curve is found to manifest a linear behavior, which demonstrates the Ohmic contacts at the interface and the metallic transport characteristic of vertical graphene junction.  相似文献   

17.
We draw motivation from recent experimental studies and present a comprehensive study of magnetothermoelectric transport in a graphene monolayer within the linear response regime. We employ the modified Kubo formalism developed for thermal transport in a magnetic field. Thermopower as well as thermal conductivity as a function of the gate voltage of a graphene monolayer in the presence of a magnetic field perpendicular to the graphene plane is determined for low magnetic fields (~1 T) as well as high fields (~8 T). We include the effects of screened charged impurities on thermal transport. We find good qualitative and quantitative agreement with recent experimental work on the subject. In addition, in order to analyze the effects of modulation, which can be induced by various means, on the thermal transport in graphene, we evaluate the thermal transport coefficients for a graphene monolayer subjected to a periodic electric modulation in a magnetic field. The results are presented as a function of the magnetic field and the gate voltage.  相似文献   

18.
The complex nature of filling factor ν = 0 of monolayer graphene is studied in magnetotransport experiments. As a function of perpendicular magnetic field a metal-insulator transition is observed, which is attributed to disorder-induced Landau level broadening in the canted antiferromagnetic phase. In the metallic regime a separation of the zeroth Landau level appears and signs of the quantum spin Hall effect are seen near ν = 0. In addition to local transport, nonlocal transport experiments show results being consistent with helical edge transport.  相似文献   

19.
We review our recent work on spin injection, transport and relaxation in graphene. The spin injection and transport in single layer graphene (SLG) were investigated using nonlocal magnetoresistance (MR) measurements. Spin injection was performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG). With tunneling contacts, the nonlocal MR was increased by a factor of ∼1000 and the spin injection/detection efficiency was greatly enhanced from ∼1% (transparent contacts) to ∼30%. Spin relaxation was investigated on graphene spin valves using nonlocal Hanle measurements. For transparent contacts, the spin lifetime was in the range of 50-100 ps. The effects of surface chemical doping showed that for spin lifetimes in the order of 100 ps, charged impurity scattering (Au) was not the dominant mechanism for spin relaxation. While using tunneling contacts to suppress the contact-induced spin relaxation, we observed the spin lifetimes as long as 771 ps at room temperature, 1.2 ns at 4 K in SLG, and 6.2 ns at 20 K in bilayer graphene (BLG). Furthermore, contrasting spin relaxation behaviors were observed in SLG and BLG. We found that Elliot-Yafet spin relaxation dominated in SLG at low temperatures whereas Dyakonov-Perel spin relaxation dominated in BLG at low temperatures. Gate tunable spin transport was studied using the SLG property of gate tunable conductivity and incorporating different types of contacts (transparent and tunneling contacts). Consistent with theoretical predictions, the nonlocal MR was proportional to the SLG conductivity for transparent contacts and varied inversely with the SLG conductivity for tunneling contacts. Finally, bipolar spin transport in SLG was studied and an electron-hole asymmetry was observed for SLG spin valves with transparent contacts, in which nonlocal MR was roughly independent of DC bias current for electrons, but varied significantly with DC bias current for holes. These results are very important for the use of graphene for spin-based logic and information storage applications.  相似文献   

20.
We report the fabrication and photocarrier dynamics in graphene–MoSe_2 heterostructures. The samples were fabricated by mechanical exfoliation and manual stacking techniques. Ultrafast laser measurements were performed on the heterostructure and MoSe_2 monolayer samples. By comparing the results, we conclude that photocarriers injected in MoSe_2 of the heterostructure transfer to graphene on an ultrafast time scale. The carriers in graphene alter the optical absorption coefficient of MoSe_2. These results illustrate the potential applications of this material in optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号