首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 440 毫秒
1.
Using algebraic methods, we find the three-loop relation between the bare and physical couplings of one-flavourD-dimensional QED, in terms of Γ functions and a singleF 32 series, whose expansion nearD=4 is obtained, by wreath-product transformations, to the order required for five-loop calculations. Taking the limitD→4, we find that the \(\overline {MS} \) coupling \(\bar \alpha (\mu )\) satisfies the boundary condition $$\begin{gathered} \frac{{\bar \alpha (m)}}{\pi } = \frac{\alpha }{\pi } + \frac{{15}}{{16}}\frac{{\alpha ^3 }}{{\pi ^3 }} + \left\{ {\frac{{11}}{{96}}\zeta (3) - \frac{1}{3}\pi ^2 \log 2} \right. \hfill \\ \left. { + \frac{{23}}{{72}}\pi ^2 - \frac{{4867}}{{5184}}} \right\}\frac{{\alpha ^4 }}{{\pi ^4 }} + \mathcal{O}(\alpha ^5 ), \hfill \\ \end{gathered} $$ wherem is the physical lepton mass and α is the physical fine structure constant. Combining this new result for the finite part of three-loop on-shell charge renormalization with the recently revised four-loop term in the \(\overline {MS} \) β-function, we obtain $$\begin{gathered} \Lambda _{QED}^{\overline {MS} } \approx \frac{{me^{3\pi /2\alpha } }}{{(3\pi /\alpha )^{9/8} }}\left( {1 - \frac{{175}}{{64}}\frac{\alpha }{\pi } + \left\{ { - \frac{{63}}{{64}}\zeta (3)} \right.} \right. \hfill \\ \left. { + \frac{1}{2}\pi ^2 \log 2 - \frac{{23}}{{48}}\pi ^2 + \frac{{492473}}{{73728}}} \right\}\left. {\frac{{\alpha ^2 }}{{\pi ^2 }}} \right), \hfill \\ \end{gathered} $$ at the four-loop level of one-flavour QED.  相似文献   

2.
In this note we study lattice Φ4-models with Hamiltonian $$H = \tfrac{1}{2}(\varphi , - \Delta \varphi ) + \lambda \Sigma \left( {\varphi _i^2 - \frac{{m^2 }}{{8\lambda }}} \right)^2$$ and Gaussian boundary conditions. Using the polymer expansion we obtain analyticity of the pressure and the correlation functions in the infinite volume limit in a region $$\left\{ {\left. \lambda \right| \left| \lambda \right|< \varepsilon ,\left| {arg } \right.\left. \lambda \right|< \frac{\pi }{2} - \delta } \right\}$$ for every δ>0.  相似文献   

3.
For a one-dimensional Ising model with interaction energy $$E\left\{ \mu \right\} = - \sum\limits_{1 \leqslant i< j \leqslant N} {J(j - i)} \mu _\iota \mu _j \left[ {J(k) \geqslant 0,\mu _\iota = \pm 1} \right]$$ it is proved that there is no long-range order at any temperature when $$S_N = \sum\limits_{k = 1}^N {kJ\left( k \right) = o} \left( {[\log N]^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } \right)$$ The same result is shown to hold for the corresponding plane rotator model when $$S_N = o\left( {\left[ {{{\log N} \mathord{\left/ {\vphantom {{\log N} {\log \log N}}} \right. \kern-\nulldelimiterspace} {\log \log N}}} \right]} \right)$$   相似文献   

4.
In an experiment performed in the CERN SPS hyperon beam we have obtained a value for the branching ratio $${{\Sigma ^ + \to p\gamma } \mathord{\left/ {\vphantom {{\Sigma ^ + \to p\gamma } {\Sigma ^ + \to p\pi }}} \right. \kern-\nulldelimiterspace} {\Sigma ^ + \to p\pi }}^0 of\left( {2.46_{ - 0.35}^{ + 0.30} } \right) \times 10^{ - 3} ,$$ corresponding to a branching ratio $${{\Sigma ^ + \to p\gamma } \mathord{\left/ {\vphantom {{\Sigma ^ + \to p\gamma } {\Sigma ^ + \to all}}} \right. \kern-\nulldelimiterspace} {\Sigma ^ + \to all}}of\left( {1.27_{ - 0.18}^{ + 0.16} } \right) \times 10^{ - 3} .$$ This result is discussed in the context of present understanding of hyperon radiative decays.  相似文献   

5.
An investigation of inclusivepp→π?+? in terms of the covariant Boltzmann factor (BF) including the chemical potential μ indicates a) that the temperatureT increases less rapidly than expected from Stefan's law, b) that a scaling property holds for the fibreball velocity of π? secondaries, leading to a multiplicity law like ~E cm 1/2 at high energy, and c) that μπ is related to the quark mass: μπ=2m q ?m π the quark massm q determined by \(T_{\pi ^ - } \) at \(\bar pp\) threshold beingm q =3Tπ?330 MeV. Because ofthreshold effects \(T_{\bar p}< T_{\pi ^ - } \) , whereas \({{\mu _p } \mathord{\left/ {\vphantom {{\mu _p } {\mu _{\pi ^ - } }}} \right. \kern-0em} {\mu _{\pi ^ - } }} \simeq {3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2}\) as expected from the quark contents of \(\bar p\) and π. The antinuclei \(\bar d\) and \({{\bar t} \mathord{\left/ {\vphantom {{\bar t} {\overline {He^3 } }}} \right. \kern-0em} {\overline {He^3 } }}\) observed inpp events are formed by coalescence of \(\bar p\) and \(\bar n\) produced in thepp collision. Semi-empirical formulae are proposed to estimate multiplicities of π?, \(\bar p\) and antinuclei.  相似文献   

6.
L P Pitaevskii 《Pramana》1987,28(5):589-589
Landau’s criterion plays an important role in the theory of superfluidity. According to this criterion, superfluid motion is possible if \(\tilde \varepsilon \left( p \right) \equiv \varepsilon \left( p \right) + pV > 0\) along the curve of the spectrum?(p) of excitations. For4He it means thatv<v c,v c≈60 m/sec.v s is equal to the tangent of the slope to the roton part of the spectrum. The question of what happens to the liquid when this velocity is exceeded, as far as we know, remains unclear. We shall show that for small excesses abovev c a one-dimensional periodic structure appears in the helium. A wave vector of this structure oriented opposite to the flow and equal toρ c/h whereρ c is the momentum at the tangent point. The quantity \(\tilde \varepsilon \left( p \right)\) is the energy of excitation in the liquid moving with velocity v. Inequality of Landau ensures that \(\tilde \varepsilon \) is positive. If \(\tilde \varepsilon \) becomes negative, then the boson distribution function \(n\left( {\tilde \varepsilon } \right)\) becomes negative, indicating the impossibility of thermodynamic equilibrium of the ideal gas of rotons; therefore the interaction between them must be taken into account. The final form of the energy operator is $$\hat H = \int {\left\{ {\hat \psi + \tilde \varepsilon \left( p \right)\hat \psi + \tfrac{g}{2}\hat \psi + \hat \psi + \hat \psi \hat \psi } \right\}} d^3 x, g \sim 2 \cdot 10^{ - 38} erg.cm.$$ Then we can seek the rotonψ-operator in the formψ=ηexp(i p c r/h), determiningη from the condition that the energy is minimized. The result is (η)2=(v?v c)ρ c/g, forv>v c. The plane waveψ corresponds to a uniform distribution of rotons. It leads, however, to a spatial modulation of the density of the helium, since the density operator \(\hat n\) contains a term which is linear in the operator \(\psi :\hat n = n_0 + \left( {n_0 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} {A \mathord{\left/ {\vphantom {A {\hat \psi \to \hat \psi ^ + }}} \right. \kern-0em} {\hat \psi \to \hat \psi ^ + }}\) ), where |A|2ρ c 2 /2m?(ρ c). Finally we find that the density of helium is modulated according to the law $$\frac{{n - n_0 }}{{n_0 }} = \left[ {\frac{{\left| A \right|^2 \left( {\nu - \nu _c } \right)\rho _c }}{{n_0 g}}} \right]^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \sin \rho _c x \approx 2,6\left[ {\frac{{\nu - \nu _c }}{{\nu _c }}} \right]^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \sin \rho _c x$$ . This phenomenon can be observed, in principle, in the experiments on scattering ofx-rays in moving helium.  相似文献   

7.
We consider the time-dependent Schrödinger-Hartree equation (1) $$iu_t + \Delta u = \left( {\frac{1}{r}*|u|^2 } \right)u + \lambda \frac{u}{r},(t, x) \in \mathbb{R} \times \mathbb{R}^3 ,$$ (2) $$u(0,x) = \phi (x) \in \Sigma ^{2,2} ,x \in \mathbb{R}^3 ,$$ where λ≧0 and \(\Sigma ^{2,2} = \{ g \in L^2 ;\parallel g\parallel _{\Sigma ^{2,2} }^2 = \sum\limits_{|a| \leqq 2} {\parallel D^a g\parallel _2^2 + \sum\limits_{|\beta | \leqq 2} {\parallel x^\beta g\parallel _2^2< \infty } } \} \) . We show that there exists a unique global solutionu of (1) and (2) such that $$u \in C(\mathbb{R};H^{1,2} ) \cap L^\infty (\mathbb{R};H^{2,2} ) \cap L_{loc}^\infty (\mathbb{R};\Sigma ^{2,2} )$$ with $$u \in L^\infty (\mathbb{R};L^2 ).$$ Furthermore, we show thatu has the following estimates: $$\parallel u(t)\parallel _{2,2} \leqq C,a.c. t \in \mathbb{R},$$ and $$\parallel u(t)\parallel _\infty \leqq C(1 + |t|)^{ - 1/2} ,a.e. t \in \mathbb{R}.$$   相似文献   

8.
Tensor meson dominance combined with vector meson dominance, QCD-potentials and the experimental leptonic widths of Γ and Γ′ predicts $$\Gamma _{\Upsilon '\left( {10.01} \right) \to \gamma 2^{ + + } \left( {\bar bb} \right)} = 2.8keV$$ and $$\Gamma _{2^{ + + } \left( {\bar bb} \right) \to \gamma \Upsilon \left( {9.46} \right)} = 134keV.$$ The angular distributions of the γ and the jetsj resulting from the decays $$e^ + e^ - \to \Upsilon '\left( {10.01} \right) \to \gamma 2^{ + + } \left( {\bar bb} \right) \to \gamma gg \to \gamma jj$$ and $$e^ + e^ - \to \Upsilon '\left( {10.01} \right) \to \gamma 2^{ + + } \left( {\bar bb} \right) \to \gamma \bar qq \to \gamma jj$$ with massless vector gluonsg, (coupled gauge invariantly) and quarksq are uniquely determined in TMD. The result for the first process agrees with that of perturbative QCD. No perturbative QCD-prediction for the latter is known.  相似文献   

9.
We consider the nonlinear elliptic degenerate equation (1) $$ - x^2 \left( {\frac{{\partial ^2 u}}{{\partial x^2 }} + \frac{{\partial ^2 u}}{{\partial y^2 }}} \right) + 2u = f(u)in\Omega _a ,$$ where $$\Omega _a = \left\{ {(x,y) \in \mathbb{R}^2 ,0< x< a,\left| y \right|< a} \right\}$$ for some constanta>0 andf is aC functions on ? such thatf(0)=f′(0)=0. Our main result asserts that: ifuC \((\bar \Omega _a )\) satisfies (2) $$u(0,y) = 0for\left| y \right|< a,$$ thenx ?2 u(x,y)∈C \(\left( {\bar \Omega _{a/2} } \right)\) and in particularuC \(\left( {\bar \Omega _{a/2} } \right)\) .  相似文献   

10.
It is shown that the basic electrodynamical conservation laws are unaffected by the presence in free space of the photomagneton of light, $\hat B^{\left( 3 \right)} = B^{\left( 0 \right)} \hat J/\rlap{--} h$ , the fundamental photon property responsible for magnetization by light. The expectation value $B^{\left( 3 \right)} = \left\langle {\hat B^{\left( 3 \right)} } \right\rangle $ does not affect the Poynting vector, so that it does not contribute to electromagnetic flux density. The electromagnetic energy density can be expressed in terms ofB (3) through the equation $$\rlap{--} h\omega = \frac{1}{{\mu _0 }}\smallint B^{\left( 3 \right)} \cdot B^{\left( 3 \right) * } dV.$$ When light magnetizes matter, the unitB (3) of magnetic flux density per photon is transferred from light to matter. This is equivalent to an elastic transfer of angular momentum. Experimental indications for the existence ofB (3) are discussed.  相似文献   

11.
The mechanisms of pre-equilibrium nuclear reactions are investigated within the Statistical Multistep Direct Process (SMDP) + Statistical Multistep Compound Process (SMCP) formalism. It has been shown that from an analysis of linear part in such dependences as $$\ln \left[ {{{\frac{{d^2 \sigma }}{{d\varepsilon _b d\Omega _b }}} \mathord{\left/ {\vphantom {{\frac{{d^2 \sigma }}{{d\varepsilon _b d\Omega _b }}} {\varepsilon _b^{1/2} }}} \right. \kern-\nulldelimiterspace} {\varepsilon _b^{1/2} }}} \right]upon\varepsilon _b $$ and $$\ln \left[ {{{\frac{{d\sigma ^{SMDP \to SMCP} }}{{d\varepsilon _b }}} \mathord{\left/ {\vphantom {{\frac{{d\sigma ^{SMDP \to SMCP} }}{{d\varepsilon _b }}} {\frac{{d\sigma ^{SMDP} }}{{d\varepsilon _b }}}}} \right. \kern-\nulldelimiterspace} {\frac{{d\sigma ^{SMDP} }}{{d\varepsilon _b }}}}} \right]upon{{U_B } \mathord{\left/ {\vphantom {{U_B } {\left( {E_a - B_b } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {E_a - B_b } \right)}}$$ one can extract information about the type of mechanism (SMDP, SMCP, SMDP→SMCP) and the number of stages of the multistep emission of secondary particles. In the above approach, we have discussed the experimental data for a broad class of reactions in various entrance and exit channels.  相似文献   

12.
We systematically exploit the reported data on \(F_2^{\gamma p} ,F_2^{\gamma n} ,\sigma ^{vN} ,\sigma ^{\bar vN} ,\left\langle {xy} \right\rangle _{vN} ,\left\langle {xy} \right\rangle _{\bar vN} ,\left\langle {1 - y} \right\rangle _{vN} \) and \(\left\langle {1 - y} \right\rangle _{\bar vN} \) in order to test various versions of the quark parton model and to obtain further predictions.  相似文献   

13.
g-factors of rotational states in176Hf and180Hf were measured with the twelve detector IPAC-apparatus of our laboratory [1]. The natural radioactivity 3.78·1010y176Lu and the 5.5 h isomer180mHf were used which populate the ground-state rotational bands of176Hf and180Hf. The integral rotations ofγ-γ directional correlations in strong external magnetic fields and in static hyperfine fields of (Lu→Hf)Fe2 and HfFe2 were observed. The following results were obtained: $$\begin{array}{l} ^{176} Hf: g\left( {4_1^ + } \right) = + 0.334\left( {38} \right) \\ ^{180} Hf: g\left( {2_1^ + } \right) = + 0.305\left( {14} \right) \\ g\left( {4_1^ + } \right) = + 0.358\left( {43} \right) \\ {{ g\left( {6_1^ + } \right)} \mathord{\left/ {\vphantom {{ g\left( {6_1^ + } \right)} {g\left( {4_1^ + } \right)}}} \right. \kern-\nulldelimiterspace} {g\left( {4_1^ + } \right)}} = + 0.95\left( {12} \right) \\ \end{array}$$ . The hyperfine field in (Lu→Hf)Fe2 was calibrated by observing the integral rotation of the 9/2? first excited state of177Hf populated in the decay of 6.7d177Lu. Theg-factor of this state was redetermined in an external magnetic field as $$^{177} Hf: g\left( {{9 \mathord{\left/ {\vphantom {9 {2^ - }}} \right. \kern-\nulldelimiterspace} {2^ - }}} \right) = + 0.228\left( 7 \right)$$ . Finally theg-factor of the 2 1 + state of176Hf was derived from the measuredg(2 1 + ) of180Hf by use of the precisely known ratiog(2 1 + ,176Hf)/g(2 1 + ,180Hf) [2] as $$^{176} Hf: g\left( {2_1^ + } \right) = + 0.315\left( {30} \right)$$ .  相似文献   

14.
The incompressible limit in nonlinear elasticity is shown to fall under the theory of singular limits of quasilinear symmetric hyperbolic systems developed by Klainerman and Majda. Specifically, initial-value problems for a family of hyperelastic materials with stored energy functions $$W\left( {\frac{{\partial x}}{{\partial X}}} \right) = W_\infty \left( {\frac{{\partial x}}{{\partial X}}} \right) + \lambda ^2 w\left( {\det \frac{{\partial x}}{{\partial X}}} \right)$$ are considered, whereX andx are reference and deformed coordinates respectively. Under the assumption that the elasticity tensor $$A_{kl}^{ij} \equiv \frac{{\partial ^2 W_\infty }}{{\partial \left( {\frac{{\partial x^i }}{{\partial X^k }}} \right)\partial \left( {\frac{{\partial x^j }}{{\partial X^l }}} \right)}}$$ is positive definite near the identity matrix and thatw″(1)>0, the following results are proven for appropriate initial data: i) existence of solutions of the corresponding evolution equations on a time interval independent of λ as λ→∞, and ii) convergence as λ → ∞ of the solutions to a solution of the incompressible elastodynamics equations.  相似文献   

15.
16.
In a bubble chamber experiment about 2×106 Σ ±-decays have been measured to separateΣ ±→ne±¯ν events from the two-body modes. NoΣ + →ne + ν event was found whereas 607Σ ?→ne?¯ν decays could be identified. The data yield for the ΔQ=?ΔS decay an upper limit: $$\frac{{\Gamma \left( {\sum {^ + } \to ne^ + v} \right)}}{{\Gamma \left( {\sum {^ - } \to ne^ - v} \right)}}< 1.9 x 10^{ - 2} (90\% confidence level)$$ and the branching ratio: $$\frac{{\Gamma \left( {\sum {^ - } \to ne^ - v} \right)}}{{\Gamma \left( {\sum {^ - } \to n\pi ^ - } \right)}} = (1.09 \pm 0.06) x 10^{ - 3} .$$   相似文献   

17.
In this article, we study the $\frac{1} {2}^ -$ and $\frac{3} {2}^ -$ heavy and doubly heavy baryon states $\Sigma _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi '_Q \left( {\frac{1} {2}^ - } \right)$ , $\Omega _Q \left( {\frac{1} {2}^ - } \right)$ , $\Xi _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Omega _{QQ} \left( {\frac{1} {2}^ - } \right)$ , $\Sigma _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Omega _Q^* \left( {\frac{3} {2}^ - } \right)$ , $\Xi _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ and $\Omega _{QQ}^* \left( {\frac{3} {2}^ - } \right)$ by subtracting the contributions from the corresponding $\frac{1} {2}^ +$ and $\frac{3} {2}^ +$ heavy and doubly heavy baryon states with the QCD sum rules in a systematic way, and make reasonable predictions for their masses.  相似文献   

18.
We study the plane rotator model with hamiltonian $$ - \frac{1}{2}\sum\limits_{x \ne y} {J_{xy} \frac{{\cos (\theta _x - \theta _y )}}{{\left| {\left. {x - y} \right|} \right.^{3 + \in } }}}$$ whereJ xy for different pair (x, y) are independent symmetric random variables. It is proved that for almost allJ, all the Gibbs statesP(J) are rotation invariant.  相似文献   

19.
We find new operator formulas for converting Q?P and P?Q ordering to Weyl ordering, where Q and P are the coordinate and momentum operator. In this way we reveal the essence of operators’ Weyl ordering scheme, e.g., Weyl ordered operator polynomial ${_{:}^{:}}\;Q^{m}P^{n}\;{_{:}^{:}}$ , $$\begin{aligned} {_{:}^{:}}\;Q^{m}P^{n}\;{_{:}^{:}} =&\sum_{l=0}^{\min (m,n)} \biggl( \frac{-i\hbar }{2} \biggr) ^{l}l!\binom{m}{l}\binom{n}{l}Q^{m-l}P^{n-l} \\ =& \biggl( \frac{\hbar }{2} \biggr) ^{ ( m+n ) /2}i^{n}H_{m,n} \biggl( \frac{\sqrt{2}Q}{\sqrt{\hbar }},\frac{-i\sqrt{2}P}{\sqrt{\hbar }} \biggr) \bigg|_{Q_{\mathrm{before}}P} \end{aligned}$$ where ${}_{:}^{:}$ ${}_{:}^{:}$ denotes the Weyl ordering symbol, and H m,n is the two-variable Hermite polynomial. This helps us to know the Weyl ordering more intuitively.  相似文献   

20.
We calculate, exactly, the next-to-leading correction to the relation between the \(\overline {MS} \) quark mass, \(\bar m\) , and the scheme-independent pole mass,M, and obtain $$\begin{gathered} \frac{M}{{\bar m(M)}} \approx 1 + \frac{4}{3}\frac{{\bar \alpha _s (M)}}{\pi } + \left[ {16.11 - 1.04\sum\limits_{i = 1}^{N_F - 1} {(1 - M_i /M)} } \right] \hfill \\ \cdot \left( {\frac{{\bar \alpha _s (M)}}{\pi }} \right)^2 + 0(\bar \alpha _s^3 (M)), \hfill \\ \end{gathered} $$ as an accurate approximation forN F?1 light quarks of massesM i <M. Combining this new result with known three-loop results for \(\overline {MS} \) coupling constant and mass renormalization, we relate the pole mass to the \(\overline {MS} \) mass, \(\bar m\) (μ), renormalized at arbitrary μ. The dominant next-to-leading correction comes from the finite part of on-shell two-loop mass renormalization, evaluated using integration by parts and checked by gauge invariance and infrared finiteness. Numerical results are given for charm and bottom \(\overline {MS} \) masses at μ=1 GeV. The next-to-leading corrections are comparable to the leading corrections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号