首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We have developed and validated a high‐performance liquid chromatography method that uses monolithic silica disk‐packed spin columns and a monolithic silica column for the simultaneous determination of NG‐monomethyl‐l ‐arginine, NG,NG‐dimethyl‐l ‐arginine, and NG,NG′‐dimethyl‐l ‐arginine in human plasma. For solid‐phase extraction, our method employs a centrifugal spin column packed with monolithic silica bonded to propyl benzenesulfonic acid as a cation exchanger. After pretreatment, the methylated arginines are converted to fluorescent derivatives with 4‐fluoro‐7‐nitro‐2,1,3‐benzoxadiazole, and then the derivatives are separated on a monolithic silica column. l ‐Arginine concentration was also determined in diluted samples. Standard calibration curves revealed that the assay was linear in the concentration range 0.2–1.0 μM for methylated arginines and 40–200 μM for l ‐arginine. Linear regression of the calibration curve yielded equations with correlation coefficients of 0.999 (r2). The sensitivity was satisfactory, with a limit of detection ranging from 3.75 to 9.0 fmol for all four compounds. The RSDs were 4.3–4.8% (intraday) and 3.0–6.8% (interday). When this method was applied to samples from six healthy donors, the detected concentrations of NG‐monomethyl‐l ‐arginine, NG,NG‐dimethyl‐l ‐arginine, NG,NG′‐dimethyl‐l ‐arginine and l ‐arginine were 0.05 ± 0.01, 0.41 ± 0.07, 0.59 ± 0.11, and 83.8 ± 30.43 μM (n = 6), respectively.  相似文献   

2.
Nitric oxide (NO) is a regulatory molecule involved in many biological processes. NO is produced by nitric oxide synthase by conversion of l‐ arginine to l‐ citrulline. l‐ Arginine methylated derivatives, asymmetric and symmetric dimethylarginines (asymmetric dimethylarginine, ADMA, and symmetric dimethylarginine, SDMA), regulate l‐ arginine availability and the activity of nitric oxide synthase. As such, they have been frequently investigated as potential biomarkers in pathologies associated with dysfunctions in NO synthesis. Here, we present a new multistep analytical methodology based on liquid chromatography combined with mass spectrometry for the accurate identification of l‐ arginine, l‐ citrulline, ADMA and SDMA. Compounds are measured as stable 2,3,4,5,6‐pentafluorobenzoyl chloride derivatives, which allows for simultaneous analysis of all compounds through chromatographic separation of ADMA and SDMA using a reverse‐phase column. Serum aliquots (100 μL) were spiked with isotope‐labeled internal standards and sodium carbonate buffer. The derivatization process was carried out at 25°C for 10 minu using pentafluorobenzoyl chloride as derivatization reagent. Calibration demonstrated good linearity (R 2 = 0.9966–0.9986) for all derivatized compounds. Good accuracy (94.67–99.91%) and precision (1.92–11.8%) were observed for the quality control samples. The applicability of the method was evaluated in a cohort of angiological patients and healthy volunteers. The method discerned significantly lower l‐ arginine and l‐ citrulline in angiologic patients. This robust and fast LC‐ESI‐MS method may be a useful tool in quantitative analysis of l‐ arginine, ADMA, SDMA and l‐ citrulline.  相似文献   

3.
Asymmetric dimethylarginine (ADMA) is a metabolite of the amino acid l ‐arginine. It competitively inhibits the enzymatic production of the cell‐signaling substance nitric oxide. Therefore, increased levels of ADMA are associated with a range of cardiovascular and other diseases. ADMA is biologically eliminated by direct renal excretion and hydrolysis by the enzyme DDAH. Recently, a further elimination pathway via the transamination by the enzyme AGXT2 to α‐keto‐δ‐(NG,NG‐dimethylguanidino)valeric acid (DMGV) has come into the focus of biological research. In this work, we describe an assay for the AGXT2 activity in mouse liver and kidney tissue. It is based on the transformation of isotope‐labeled ADMA‐d6 to DMGV‐d6. The quantification of the DMGV‐d6 produced by this reaction in tissue homogenate samples was accomplished by chromatographic separation on a porous graphitic carbon column and tandem mass spectrometric detection. DMGV‐d6 with the deuterium labels in different molecular positions was used as internal standard. The overall production rates of DMGV‐d6 in mice were 195.37 pmol/min/mg total protein in liver and 85.21 pmol/min/mg total protein in kidney tissue, with coefficients of variation of 6.31% and 11.25%, respectively. This method can be applied as a tool for the characterization of the ADMA elimination by the AGXT2 pathway. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A simple, fast, sensitive, and reproducible isocratic liquid chromatography–mass spectrometry (LC-MS) method coupled with an atmospheric pressure chemical ionization (APCI) interface for simultaneous separation and determination of L-arginine (ARG) and its methylated metabolites, N-monomethyl-L-arginine (MMA), NG,NG-dimethylarginine (asymmetric dimethyl arginine, ADMA), and NG,NG-dimethylarginine (symmetric dimethyl arginine, SDMA), in human plasma is presented. Sample pretreatment is not required other than deproteinization with 5-sulfosalicylic acid (5-SSA). Satisfactory chromatographic separation was achieved on a 2.0×150-mm Shimadzu VP-ODS column by using a mobile phase consisting of water/acetonitrile (90/10, v/v) containing 0.5% trifluoroacetic acid (TFA). Positive selective ion monitoring (SIM) mode was chosen for quantification of each analyte. The positively protonated molecular ions [M+H]+ of ARG, MMA, ADMA, and SDMA were monitored at m/z 175, 189, 203, and 203, respectively. L-Homoarginine was used as the internal standard (IS) for the assay. The limits of quantification (LOQs) were found to be 1.0 mol L–1 for ARG, and 0.2 mol L–1 for MMA, ADMA, and SDMA. The inter-assay precision and accuracy were in the range of 1.8–4.9% and –3.0–5.0%, respectively. The intra-assay precision and accuracy were in the order of 1.7–4.6 and –2.6–4.0%, respectively. The recoveries were between 90.0 and 106.6%. The levels of ARG, MMA, ADMA, and SDMA in human plasma were also determined using the developed method.  相似文献   

5.
Experimental studies document that increased asymmetric dimethylarginine (ADMA) blood levels inhibit NOS significantly, reducing NO generation. ADMA measurement often needs sample cleanup by SPE prior to chromatography and precolumn derivatization that cannot be easily employed in a routine clinical setting. We set up a new reliable CE method to measure ADMA, symmetric dimethylarginine (SDMA), and arginine without sample extraction or precolumn derivatization in order to examine their concentrations in human plasma. Sample was concentrated prior to CE injection and analytes were monitored by UV detection. CE analysis was performed in an uncoated fused-silica capillary, 75 microm id and 60.2 cm length (50 cm to the detection window), injecting 1 s water plug (0.5 psi) followed by 10 s of the sample (0.5 psi). Separation was carried out in a 50 mmol/L Tris-phosphate run buffer at pH 2.30, 15 degrees C and 15 kV (75 microA) at normal polarity. Recovery of plasma ADMA was 101-104% and inter-day CV was less than 3%. Assay performance was evaluated measuring the levels of arginine and its dimethyl derivatives in 77 subjects. Passing-Bablok regression and Bland-Altman test for methods comparison suggest that the data obtained by our method and by a reference CE-LIF assay are similar.  相似文献   

6.
Nitric oxide (NO) is one of the most important mediators and neurotransmitters and its levels change under pathological conditions. NO production may be regulated by endogenous nitric oxide synthase (NOS) inhibitors, in particular asymmetric dimethylarginine (ADMA). Most of the interest is focused on ADMA, since this compound is present in plasma and urine and accumulation of ADMA has been described in many disease states but little is known about cerebrospinal fluid (CSF) concentrations of this compound and of its structural isomer symmetric dimethylarginine (SDMA). To determine the levels of methylarginines, we here present a new hydrophilic interaction chromatography (HILIC)-MS/MS method for the precise determination of these substances in CSF from microdialysis samples of rat prefrontal cortex (PFC). The method requires only minimal sample preparation and features isotope-labelled internal standards.  相似文献   

7.
A fully automated analyzer for methylated L-arginine metabolites [N,N-dimethyl-L-arginine (ADMA), N-methylarginine (NMMA) and N,N'-dimethyl-L-arginine (SDMA)] by high-performance liquid chromatography with post-column fluorescence derivatization was developed. This system consists of an on-line extraction, a separation on a reversed phase ion-pair chromatograph, a post-column derivatization by o-phthaladehyde (OPA) and thiol reaction, and fluorescence detection. NMMA, ADMA and SDMA were separated in 40 min with isocratic elution by a combination of octanoate and cyclohexane carboxylate as ion-pair reagents. The eluate was monitored at 450 nm with excitation at 337 nm. The calibration curves for NMMA, ADMA and SDMA showed linearity over the range from 0.05 micromol l(-1) (0.5 pmol on column) to 5.0 micromol l(-1) (50 pmol on column). This method does not require any time-consuming pre-treatment and requires only 10 microl of plasma sample for assay.  相似文献   

8.
A method for the detection of unlabeled and 15N2‐labeled l ‐tryptophan (l ‐Trp), l ‐kynurenine (l ‐Kyn), serotonin (5‐HT) and quinolinic acid (QA) in human and rat plasma by GC/MS is described. Labeled and unlabeled versions of these four products were analyzed as their acyl substitution derivatives using pentafluoropropionic anhydride and 2,2,3,3,3‐pentafluoro‐1‐propanol. Products were then separated by GC and analyzed by selected ion monitoring using negative ion chemical ionization mass spectrometry. l ‐[13C11, 15N2]‐Trp, methyl‐serotonin and 3,5‐pyridinedicarboxylic acid were used as internal standards for this method. The coefficients of variation for inter‐assay repeatability were found to be approximately 5.2% for l ‐Trp and 15N2‐Trp, 17.1% for l ‐Kyn, 16.9% for 5‐HT and 5.8% for QA (n = 2). We used this method to determine isotope enrichments in plasma l ‐Trp over the course of a continuous, intravenous infusion of l ‐[15N2]Trp in pregnant rat in the fasting state. Plasma 15N2‐Trp enrichment reached a plateau at 120 min. The free Trp appearance rate (Ra) into plasma was 49.5 ± 3.35 µmol/kg/h. The GC/MS method was applied to determine the enrichment of 15N‐labeled l ‐Trp, l ‐Kyn, 5‐HT and QA concurrently with the concentration of non‐labeled l ‐Trp, l ‐Kyn, 5‐HT and QA in plasma. This method may help improve our understanding on l ‐Trp metabolism in vivo in animals and humans and potentially reveal the relative contribution of the four pathways of l ‐Trp metabolism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.

Background

Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide (NO) formation inhibitor, has emerged as a promising biomarker of NO-associated endothelial dysfunction in cardiovascular diseases as well in chronic renal failure. The interest in potentially fundamental role of this metabolite, in basic and clinical research, led to the development of numerous analytical methods for the quantitative determination of ADMA and dimethylarginines in biological systems, notably plasma, serum and urine.

Objectives

The aim of this work was to present a simple, fast and accurate UPLC-tandem-MS-based method for the simultaneous determination and quantification of arginine, ADMA, SDMA, NMMA, homo-arginine and citrulline. This method is designed for high sample throughput of only 10 μL of human plasma, serum or urine.

Methods

The analysis time is reduced to 1.9 min by an ultrahigh-performance liquid chromatography run coupled with electrospray ionization (ESI) in the positive mode tandem mass spectrometry detection.

Results

The method was validated in plasma, serum and urine. Correlation coefficients (r2) of the calibration curves in all matrices considered ranged from 0.9810 to 0.9993. Inter- and intra-assay precision, accuracy, recovery and carry-over were evaluated for validation. The LOD was 0.01 μM for all compounds in water, plasma and serum and 0.1 μM in urine. The LOQ was 0.05 μM for ADMA, SDMA, NMMA and H-Arg and 0.5 μM for Arg and Cit in water, plasma and serum; while in urine was 0.1 μM for ADMA, SDMA, NMMA and H-Arg and 0.5 μM for Arg and Cit.The precision was ranged from 1% to 15% expressed as CV% and the accuracy (bias %) was <±7% for all added concentrations with the exception of NMMA (−10%).ADMA mean plasma levels, measured in healthy adults and newborns, were in accord with literature data published: (M ± SD) 0.56 ± 0.10 μM and 0.84 ± 0.21 μM, respectively, showing that ADMA levels in plasma decreased with age. In serum we have similar data (0.54 ± 0.18 μM and 1.14 ± 0.36 μM), while in neonatal urine ADMA was 11.98 ± 7.13 μmol mmol−1 creatinine.

Conclusions

Data from calibration curves and method validation reveal that the method is accurate and precise. The fast run time, the feasibility of high sample throughput and the small amount of sample required make this method very suitable for routine analysis in the clinical setting.  相似文献   

10.
The article reports a simple, sensitive and fast LC/MS method for the analysis of L-arginine (L-Arg), asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) in human plasma. The homoarginine was used as the internal standard (IS). The chromatographic separation was achieved on C??(150 mm×2.1 mm, 5 μm) column with a mobile phase consisting of ammonium acetate (0.25 mmol/l) and methanol (93 : 7, v/v), at a flow rate of 0.2 ml/min. L-Arg, ADMA and SDMA were well separated by LC/MS with selective ion mode (SIM). The method was successfully applied to type 2 diabetes mellitus (T2DM) study. Twenty-one healthy controls and twenty-two T2DM patients before and after treatment two years were investigated. The results indicated that the level of ADMA in T2DM was significantly higher than that in healthy controls. Furthermore, ADMA has important association with the development of cardiovascular diseases.  相似文献   

11.
The polypeptide hormone erythropoietin (EPO), which is a forbidden doping drug, was determined by high-performance liquid chromatography combined with tandem mass spectrometry (HPLC-MS/MS). The hypothesis about the influence of EPO on the asymmetric dimethylarginine (ADMA)-dimethylargininedime-thylaminohydrolase (DDAH)-NO-synthase system was verified. Changes in this system can serve as indirect biochemical markers of the presence of the forbidden EPO drug in the organism. In the test group, the concentrations of biochemical markers varied from 10 to 40 μg/ml for ADMA and symmetrical DMA (SDMA) and from 0.5 to 10 μg/ml for arginine and citrulline. A single intravenous administration of r-HuEPO (Epocrin, 2000 ME/day) for two volunteers reliably increased ADMA, SDMA, arginine, and citrulline concentrations to 40–270 μg/ml, 40–240μg/ml, 10–60 μg/ml, and 12–140 μg/ml, respectively, with respect to the reference values. The simultaneous increase in arginine, methylarginines, and citrulline contents could be an indirect marker of EPO abuse. The method is recommended for fast screening analysis.  相似文献   

12.
We have developed and described a highly sensitive, accurate and precise reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous determination of l-arginine and 12 molecules participating in its metabolic cycle in human urine samples. After pre-column derivatization with ortho-phthaldialdehyde (OPA) reagent containing 3-mercaptopropionic acid (3MPA), the fluorescent derivatives were separated by a gradient elution and detected by fluorescence measurement at 338 nm (excitation) and 455 nm (emission). l-Arginine (ARG) and its metabolites: l-glutamine (GLN), NG-hydroxy-l-arginine (NOHA), l-citrulline (CIT), NG-monomethyl-l-arginine (NMMA), l-homoarginine (HARG), asymmetric NG,NG-dimethyl-l-arginine (ADMA), symmetric NG,NG′-dimethyl-l-arginine (SDMA), l-ornithine (ORN), putrescine (PUT), agmatine (AGM), spermidine (SPERMD) and spermine (SPERM) were extracted in a cation-exchange solid-phase extraction (SPE) column and after derivatization separated in a Purospher® STAR RP-18e analytical column. The calibration curves of analysed compounds are linear within the range of concentration: 45-825, 0.2-15, 16-225, 12-285, 0.1-32, 15-235, 0.1-12, 0.1-12, 10-205, 0.02-12, 0.1-24, 0.01-10 and 0.01-8 nmol mL−1 for GLN, NOHA, CIT, ARG, NMMA, HARG, ADMA, SDMA, ORN, PUT, AGM, SPERMD and SPERM, respectively. The correlation coefficients are greater than 0.9980. Coefficients of variation are not higher than 6.0% for inter-day precision. The method has been determined or tested for limits of detection and quantification, linearity, precision, accuracy and recovery. All detection parameters of the method demonstrate that it is a reliable and efficient means of the comprehensive determination of ARG and its 12 main metabolites, making this approach suitable for routine clinical applications. The levels of analysed compounds in human urine can be successfully determined using this developed method with no matrix effect.  相似文献   

13.
N(G)-Monomethyl-L-arginine (L-NMMA), N(G),N(G)-dimethyl-L-arginine (ADMA), and N(G),N(G)'-dimethyl-L-arginine (SDMA) are emerging cardiovascular risk factors. A high-performance liquid chromatographic method with fluorescence detection for the simultaneous determination of L-NMMA, ADMA and SDMA is described. The assay employed 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as a fluorescent derivatization reagent. After solid phase extraction with cation-exchange column, the methylated arginines were converted to fluorescent derivatives with NBD-F, and the derivatives were separated within 32 min on a reversed-phase column. Nomega-Propyl-L-arginine was Used as an internal standard. Extrapolated detection limits were 12 nM (12 fmol per injection) for L-NMMA and 20 nM (20 fmol per injection) for ADMA and SDMA, respectively, with a signal-to-noise ratio of 3. The calibration curves for L-NMMA, ADMA and SDMA were linear within the range of 50-5000 fmol. The method was applied to the quantitative determination of L-NMMA, ADMA and SDMA in 200 microl of rat plasma. The concentrations of L-NMMA, ADMA and SDMA in rat plasma were 0.16 +/- 0.03, 0.80 +/- 0.25 and 0.40 +/- 0.21 microM, respectively (n = 5).  相似文献   

14.
Nitric oxide synthase (NOS) inhibitors are potential drug candidates due to the critical role of an excessive production of nitric oxide in a range of diseases. At present, the radiometric detection of l ‐[3H]‐citrulline produced from l ‐[3H]‐arginine during the enzymatic reaction is one of the most accepted methods to assess the in vitro activity of NOS inhibitors. Here we report a fast, easy, and cheap reversed‐phase high‐performance liquid chromatography method with fluorescence detection, based on the precolumn derivatization of l ‐citrulline with o‐phthaldialdehyde/N‐acetyl cysteine, for the in vitro screening of NOS inhibitors. To evaluate enzyme inhibition by the developed method, N‐[3‐(aminomethyl)benzyl]acetamidine, a potent and selective inhibitor of inducible NOS, was used as a test compound. The half maximal inhibitory concentration obtained was comparable to that derived by the well‐established radiometric assay.  相似文献   

15.
The present study is based on the assumption that changes in an ADMA-DDAH-NOS (ADMA-asymmetrical dimethylarginine; DDAH-dimethyl-arginine dimethylaminohydrolase; NOS-nitric oxide synthase) system could be employed as indirect markers for recombinant human erythropoietin (rHuEPO) administration in doping control. We assessed a predictive value of four proposed new markers for rHuEPO abuse. Preliminary data showed that concentrations of ADMA, symmetrical dimethylarginine (SDMA), citrulline and arginine in human urine were increased after administration of a single intravenous erythropoietin injection (2000 U day(-1), Epocrine, St-Petersburg, Russia). The study of variations of ADMA, SDMA, arginine and citrulline levels before and after rHuEPO administration was performed with two healthy male volunteers. Urine samples were collected before rHuEPO administration and urinary concentrations of ADMA and SDMA were determined at 10.0-40 microg mL(-1) and of arginine and citrulline at 0.5-10 microg mL(-1). A single dose injection of rHuEPO caused an increase in ADMA, SDMA, arginine and citrulline concentrations up to 40-270 microg mL(-1), 40-240 microg mL(-1), 10-60 microg mL(-1) and 12-140 microg mL(-1), respectively. These preliminary results indicated that an indirect approach could be used as a pre-screening of urine samples in order to decrease the number of samples with a low probability of rHuEPO abuse and, thus, save costs and human workload.  相似文献   

16.
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase and an established biomarker for endothelial function, while symmetric dimethylarginine (SDMA), an emerging biomarker for renal function, has been shown to outperform creatinine-based equations for estimated glomerular filtration rate. In order to study these analytes for clinical research, a fast and simple method for measuring arginine (ARG), SDMA, and ADMA in plasma by liquid chromatography–tandem mass spectrometry (LC-MS/MS) has been developed. Plasma (50 μL) was mixed with 50 μL of internal standard of 13C-arginine and d7-ADMA followed by protein precipitation with methanol containing 1% ammonium acetate (300 μL). After centrifugation, the supernatant (100 μL) was mixed with 300 μL of acetonitrile with 1% formic acid, and the mixture was injected onto a silica column monitored by a mass spectrometer. The analytical cycle time was 5.0 min. The method was linear from 5.7 to 489.7 μM for ARG, 0.06 to 5.15 μM for SDMA, and from 0.34 to 5.65 μM for ADMA, with an accuracy of 99.0–120.0%. Total coefficients of variation for all analytes ranged from 2.7% to 7.7% for three concentration levels. The effects of hemolysis, lipemia, uremia, icterus, specimen tube types, storage at different temperature, and freeze/thaw were thoroughly investigated. Reference ranges were established using 51 well-defined reference subjects (12 men and 39 women, age 19–64 years): 53.1–129.7 μM for ARG, 0.32–0.65 μM for SDMA, and 0.36–0.67 μM for ADMA. In conclusion, the validated LC-MS/MS method described here offers a fast and reliable ARG, SDMA, and ADMA quantitation in plasma with minimum sample preparation.  相似文献   

17.
The chromatographic retention mechanism describing relationship between retention factor and concentration of Cu2+(l ‐phenylalanine)2 using chiral ligand mobile phase was investigated and eight mandelic acid derivatives were enantioseparated by chiral ligand exchange chromatography. The relationship between retention factor and concentration of the Cu2+(l ‐phenylalanine)2 complex was proven to be in conformity with chromatographic retention mechanism in which chiral discrimination occurred both in mobile and stationary phase. Different copper(II) salts, chiral ligands, organic modifier, pH of aqueous phase, and conventional temperature on retention behavior were optimized. Eight racemates were successfully enantioseparated on a common reversed‐phase column with an optimized mobile phase composed of 6 mmol/L of l ‐phenylalanine or N,N‐dimethyl‐l ‐phenylalanine and 3 mmol/Lof copper(II) acetate or copper(II) sulfate aqueous solution and methanol.  相似文献   

18.
We report an efficient synthetic strategy to diverse hydantoins and thiohydantoins involving a three‐component reaction with the aid of deep eutectic solvent. Here, N,N′‐dimethyl urea and N,N′‐dimethyl thiourea play a dual role as reactant and reaction medium along with l ‐(+)‐tartaric acid. The three‐component reaction provides an easy access to 5‐amino‐1,3‐dialkyl‐substituted hydantoins and thiohydantoins in good yields.  相似文献   

19.
Hui Y  Wong M  Kim JO  Love J  Ansley DM  Chen DD 《Electrophoresis》2012,33(12):1911-1920
Asymmetric dimethylarginine (ADMA) is an inhibitor of nitric oxide synthase and a risk factor for cardiovascular events. We have developed a new derivatization method to enable baseline separation of the regio-isomers, ADMA, and symmetric dimethylarginine (SDMA), within 15 min on a C18 reverse phase column. Reacting naphthalene-2,3-dicarboxaldehyde with ADMA and SDMA in the presence of 2-mercaptoethanol produces corresponding 2,3-dihydro-benzo[f]isoindol-1-ones that are more stable than previously reported ortho-phthaldialdehyde and 2-mercaptoethanol derivatives. LC-MS/MS quantitation of these derivatives can be used to determine ADMA and SDMA concentrations in the plasma of patients to receive on-pump coronary artery bypass grafting (CABG) surgery. The LOD, LOQ and lower LOQ (LLOQ) of this method were determined to be 2.6, 8.7, and 25 nM for ADMA, and 2.5, 8.3, and 25 nM for SDMA, respectively, with consumption of only 50 μL of plasma. The relative standard deviations and relative errors of the intraday and interday determinations, as measurements of reproducibility and accuracy, are all within 15%. The ADMA and SDMA concentrations in patient plasma are 298.1 ± 11.2 nM (mean ± S.E.M., n = 123) and 457.7 ± 19.8 nM (mean ± S.E.M., n = 123), respectively. Upon unblinding of our clinical trial, these predetermined values might explain patient clinical outcomes associated with on-pump CABG surgery, as ADMA is known to inhibit nitric oxide production. Furthermore, this derivatization reaction in conjunction with LC-MS/MS analysis may open a venue to explore alternative chemical labeling modes for LC-MS/MS applications, such as analysis of other amino acids, metabolites, and peptides containing primary amine group(s).  相似文献   

20.
Guanidinium organosulfonates (GSs) are a large and well‐explored archetypal family of hydrogen‐bonded organic host frameworks that have, over the past 25 years, been regarded as nonporous. Reported here is the only example to date of a conventionally microporous GS host phase, namely guanidinium 1,4‐benzenedisulfonate ( p ‐G2BDS ). p ‐G2BDS is obtained from its acetone solvate, AcMe@ G2BDS , by single‐crystal‐to‐single‐crystal (SC‐SC) desolvation, and exhibits a Type I low‐temperature/pressure N2 sorption isotherm (SABET=408.7(2) m2 g?1, 77 K). SC‐SC sorption of N2, CO2, Xe, and AcMe by p ‐G2BDS is explored under various conditions and X‐ray diffraction provides a measurement of the high‐pressure, room temperature Xe and CO2 sorption isotherms. Though p ‐G2BDS is formally metastable relative to the “collapsed”, nonporous polymorph, np ‐G2BDS , a sample of p ‐G2BDS survived for almost two decades under ambient conditions. np ‐G2BDS reverts to zCO2@ p ‐G2BDS or yXe@ p ‐G2BDS (y,z=variable) when pressure of CO2 or Xe, respectively, is applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号