首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have implemented the velocity map imaging technique to study clustering in the pulsed supersonic expansions of hydrogen bromide in helium, argon, and xenon. The expansions are characterized by direct imaging of the beam velocity distributions. We have investigated the cluster generation by means of UV photodissociation and photoionization of HBr molecules. Two distinct features appear in the hydrogen atom photofragment images in the clustering regime: (i) photofragments with near zero kinetic energies and (ii) "hot" photofragments originating from vibrationally excited HBr molecules. The origin of both features is attributed to the fragment caging by the cluster. We discuss the nature of the formed clusters based on the change of the photofragment images with the expansion parameters and on the photoionization mass spectra and conclude that single HBr molecule encompassed with rare gas "snowball" is consistent with the experimental observations.  相似文献   

2.
具有体积小、功耗低、灵敏度高、硅工艺兼容性好等优点的金属氧化物半导体(MOS)气体传感器现已广泛地应用于军事、科研和国民经济的各个领域。然而MOS传感器的低选择性阻碍了其在物联网(IoT)时代的应用前景。为此,本文综述了解决MOS传感器选择性的研究进展,主要介绍了敏感材料性能提升、电子鼻和热调制三种改善MOS传感器选择性的技术方法,阐述了三种方法目前所存在的问题及其未来的发展趋势。同时,本文还对比介绍了机器嗅觉领域主流的主成分分析(PCA)、线性判别分析(LDA)和神经网络(NN)模式识别/机器学习算法。最后,本综述展望了具有数据降维、特征提取和鲁棒性识别分类性能的卷积神经网络(CNN)深度学习算法在气体识别领域的应用前景。基于敏感材料性能的提升、多种调制手段与阵列技术的结合以及人工智能(AI)领域深度学习算法的最新进展,将会极大地增强非选择性MOS传感器的挥发性有机化合物(VOCs)分子识别能力。  相似文献   

3.
We have set out an equation for partition of 87 neutral molecules from water to o-nitrophenyl octyl ether, NPOE, an equation for partition of the 87 neutral molecules and 21 ionic species from water to NPOE, and an equation for partition of 87 neutral molecules from the gas phase to NPOE. Comparison with equations for partition into other solvents shows that, as regards partition of neutral (nonelectrolyte) compounds, NPOE would be a good model for 1,2-dichloroethane and for nitrobenzene. In terms of partition of ions and ionic species, NPOE is quite similar to 1,2-dichloroethane and not far away from other aprotic solvents such as nitrobenzene.  相似文献   

4.
油气混相过程的界面传质特性对气驱提高原油采收率技术非常重要。本文针对吉林某油田的实际油组分,采用分子动力学模拟研究了气驱油过程,分析了不同气体和驱替压力下油气两相的状态变化以及界面特性,获得不同驱替气体的最小混相压力(MMP)。结果表明,随着驱替气体压力的升高,气相的密度逐渐增大,油相膨胀密度降低,气相与油相的混合程度增强,油气两相界面厚度增加,界面张力随之减小。同时发现,驱替相中二氧化碳浓度越高,在同等气体压力下,油气界面更厚,油气混合程度更高。纯CO2驱油得到的MMP远远小于纯N2驱油,当这两种气体摩尔比为1 : 1混合时MMP介于两种纯气体之间,说明要达到同样的驱油效果二氧化碳需要的压力更小。最后,本文从分子微观作用力角度解释了驱替气体不同时影响油气混相程度的机制,通过分子平均作用势曲线发现油相分子对CO2的吸引力要大于N2分子,因此CO2分子更容易与油相混合,驱替效果更明显。  相似文献   

5.
We have studied the diffusion of gas molecules inside an amorphous polystyrene matrix. The diffusion constant of several gases at T = 450 K in polystyrene was computed. Particular attention was given to CO2 for temperatures between 300 and 800 K. The temperature dependence of the diffusion constant and the relationship between the diffusion constant and the diameter of the gas molecule were analysed. We further examined the motion of the gas molecules on the short time scale not readily accessible to experimental observation. Here we used the cage overlap function which gives information on the typical cage sizes and distribution times. On the short time scale the gas molecules show a hopping behaviour. The distribution of the time period between hopping events, the distance between the cages and the size of the cages in the polystyrene matrix in the presence of guest molecules were calculated. Through the analyzing, we get a clearer picture from the behaviour of gas molecules on short time scale in the polymer matrix.  相似文献   

6.
A simple method has been developed for the measurement of high quality FTIR spectra of aerosols of gas-hydrate nanoparticles. The application of this method enables quantitative observation of gas hydrates that form on subsecond timescales using our all-vapor approach that includes an ether catalyst rather than high pressures to promote hydrate formation. The sampling method is versatile allowing routine studies at temperatures ranging from 120 to 210 K of either a single gas or the competitive uptake of different gas molecules in small cages of the hydrates. The present study emphasizes hydrate aerosols formed by pulsing vapor mixtures into a cold chamber held at 160 or 180 K. We emphasize aerosol spectra from 6 scans recorded an average of 8 s after "instantaneous" hydrate formation as well as of the gas hydrates as they evolve with time. Quantitative aerosol data are reported and analyzed for single small-cage guests and for mixed hydrates of CO(2), CH(4), C(2)H(2), N(2)O, N(2), and air. The approach, combined with the instant formation of gas hydrates from vapors only, offers promise with respect to optimization of methods for the formation and control of gas hydrates.  相似文献   

7.
To ensure the possibility of using graphyne as a gas sensor, we have studied the adsorption of boron-halogenated system on pristine graphyne with the help of density functional theory using generalized gradient approximation. Depending on binding energy the most stable orientation, adsorption strength and optimal distance between the above mention molecules and graphyne surface have been determined. The band gap of graphyne slightly increases with the adsorption of the boron-halogenated system. The graphyne system behaves as n-type semiconductor when it interacts with BI3 and BCl3 molecules, and it behaves as p-type semiconductor when interaction with BF3 molecule takes place. Our result reveals that the electronic properties of pristine graphyne are highly influenced by the adsorption of boron-halogenated molecule. We have observed that pristine graphyne has zero electric dipole moment, but with the interaction of boron-halogenated molecule, a significant change in the electric dipole moment takes place. Hence, by measuring the electric dipole moment change, graphyne-based gas sensor can be design for the detection of above-mentioned molecules.  相似文献   

8.
A combination of astronomical observations, laboratory studies, and theoretical modelling is necessary to determine the organic chemistry of dense molecular clouds. We present spectroscopic evidence for the composition and evolution of organic molecules in protostellar environments. The principal reaction pathways to complex molecule formation by catalysis on dust grains and by reactions in the interstellar gas are described. Protostellar cores, where warming of dust has induced evaporation of icy grain mantles, are excellent sites in which to study the interaction between gas phase and grain-surface chemistries. We investigate the link between organics that are observed as direct products of grain surface reactions and those which are formed by secondary gas phase reactions of evaporated surface products. Theory predicts observable correlations between specific interstellar molecules, and also which new organics are viable for detection. We discuss recent infrared observations obtained with the Infrared Space Observatory, laboratory studies of organic molecules, theories of molecule formation, and summarise recent radioastronomical searches for various complex molecules such as ethers, azaheterocyclic compounds, and amino acids.  相似文献   

9.
We report on the local microenvironment surrounding a free dansyl probe, dansyl attached to controlled pore glass (D-CPG), and dansyl molecules attached to trimethylsilyl-capped CPG (capped D-CPG) in pure and alcohol-modified supercritical CO2. These systems were selected to provide insights into the local microenvironment surrounding a reactive agent immobilized at a silica surface in contact with pure and cosolvent-modified supercritical CO2. Local surface-bound dansyl molecule solvation on the CPG surface depends on the dansyl molecule surface loading, the surface chemistry (uncapped versus capped), the bulk fluid density, and the alcohol gas phase absolute acidity. At high dansyl loadings, the surface-bound dansyl molecules are largely "solvated" by other dansyl molecules and these molecules are not affected significantly by the fluid phase. When the dansyl surface loading decreases, dansyl molecules can be accessed/solvated/wetted by the fluid phase. However, at the lowest dansyl loadings studied, the dansyl molecules are in a fluid inaccessible/restrictive environment and do not sense the fluid phase to any significant degree. In uncapped D-CPG, one can poise the system such that the local concentration of an environmentally less responsible cosolvent (alcohol) in the immediate vicinity of surface-immobilized dansyl molecules can approach 100% even though the bulk solution contains orders of magnitude less of this less environmentally responsible cosolvent. In capped C-CPG, the surface excess is attenuated in comparison to that of uncapped D-CPG. The extent of this cosolvent surface excess is discussed in terms of the dansyl surface loading, the local density fluctuations, the cosolvent and surface silanol gas phase acidities, and the silica surface chemistry. These results also have implications for cleanings, extractions, heterogeneous reactions, separations, and nanomaterial fabrication using supercritical fluids.  相似文献   

10.
The salt 1,1,3,3-tetramethylguanidinium bromide, [((CH(3))(2)N)(2)C═NH(2)](+)Br(-) or [tmgH]Br, was found to melt at 135(5) °C, forming what may be referred to as a moderate temperature ionic liquid. The chemistry was studied and compared with the corresponding chloride compound. We present X-ray diffraction and Raman evidence to show that also the bromide salt contains dimeric ion pair "molecules" in the crystalline state and probably also in the liquid state. The structure of [tmgH]Br determined at 120(2) K was found to be monoclinic, space group P2(1)/n, with a = 7.2072(14), b = 13.335(3), c = 9.378(2) ?, β =104.31(3)°, Z = 2, based on 11769 reflections, measured from θ = 2.71-28.00° on a small colorless needle crystal. Raman and IR spectra are presented and assigned. When heated, both the chloride and the bromide salts form vapor phases. The Raman spectra of the vapors are surprisingly alike, showing, for example, a characteristic strong band at 2229 cm(-1). This band was interpreted by some of us to show that the [tmgH]Cl gas phase should consist of monomeric ion pair "molecules" held together by a single N-H(+)···Cl(-) hydrogen bond, the stretching vibration of which should be causing the band, based on ab initio molecular orbital density functional theory type calculations. It is not likely that both the bromide and chloride should have identical spectra. As explanation, the formation of 1,1-dimethylcyanamide gas is proposed, by decomposition of [tmgH]X leaving dimethylammonium halogenide (X = Cl, Br). The Raman spectra of all gas phases were quite identical and fitted the calculated spectrum of dimethylcyanamide. It is concluded that monomeric ion pair "molecules" held together by single N-H(+)···X(-) hydrogen bonds probably do not exist in the vapor phase over the solids at about 200-230 °C.  相似文献   

11.
We report spectra of various benzene isotopomers and their dimers in helium nanodroplets in the region of the first Herzberg-Teller allowed vibronic transition 6(0)(1) (1)B(2u)<--(1)A(1g) (the A(0) (0) transition) at approximately 260 nm. Excitation spectra have been recorded using both beam depletion detection and laser-induced fluorescence. Unlike for many larger aromatic molecules, the monomer spectra consist of a single "zero-phonon" line, blueshifted by approximately 30 cm(-1) from the gas phase position. Rotational band simulations show that the moments of inertia of C(6)H(6) in the nanodroplets are at least six-times larger than in the gas phase. The dimer spectra present the same vibronic fine structure (though modestly compressed) as previously observed in the gas phase. The fluorescence lifetime and quantum yield of the dimer are found to be equal to those of the monomer, implying substantial inhibition of excimer formation in the dimer in helium.  相似文献   

12.
The chemistry of hydrogen-rich hydrocarbon-hydrogen mixtures is of primary interest for the understanding of the low-pressure synthesis of diamond. We per formed experiments under well-defined conditions like temperature, pressure, initial gas composition, etc. The gas composition at the end of a flow reactor was analyzed by a calibrated mass spectrometer and compared to results obtained from the Chemkin computer code. Residence thne in the reactor as well as other process parameters were similar to those of diamond-growing PA CVD processes performed earlier with the same experimental set-rip. Modeling and experiment under isothermal conditions show quantitative agreement. We realized time-resolved mass .spectrometry by means of a helium-flushed gas sampling probe. There is evidence that the commonly used reaction kinetic data for the dissociation C2H6 (+ M) 2CH,(+M) gives 2 too small C2H4 concentrations for hydrogen-rich conditions. This could be attributed to the poorly known third-body efficiencies of the H2 molecules compared to Ar or C2H6 from which kinetic data are commonly derived.  相似文献   

13.
A key challenge in predicting the multiphase chemistry of aerosols and droplets is connecting reaction probabilities, observed in an experiment, with the kinetics of individual elementary steps that control the chemistry that occurs across a gas/liquid interface. Here we report evidence that oxygenated molecules accelerate the heterogeneous reaction rate of chlorine gas with an alkene (squalene, Sqe) in submicron droplets. The effective reaction probability for Sqe is sensitive to both the aerosol composition and gas phase environment. In binary aerosol mixtures with 2-decyl-1-tetradecanol, linoleic acid and oleic acid, Sqe reacts 12–23× more rapidly than in a pure aerosol. In contrast, the reactivity of Sqe is diminished by 3× when mixed with an alkane. Additionally, small oxygenated molecules in the gas phase (water, ethanol, acetone, and acetic acid) accelerate (up to 10×) the heterogeneous chlorination rate of Sqe. The overall reaction mechanism is not altered by the presence of these aerosol and gas phase additives, suggesting instead that they act as catalysts. Since the largest rate acceleration occurs in the presence of oxygenated molecules, we conclude that halogen bonding enhances reactivity by slowing the desorption kinetics of Cl2 at the interface, in a way that is analogous to decreasing temperature. These results highlight the importance of relatively weak interactions in controlling the speed of multiphase reactions important for atmospheric and indoor environments.

The heterogeneous chlorination rate of an alkene is unexpectedly accelerated in the presence of spectator molecules containing oxygenated functional groups, which suggests weak halogen bonds can catalyze reactions at liquid surfaces.  相似文献   

14.
We investigated structural changes, phase diagram, and vibrational properties of hydrogen hydrate in filled-ice phase C(2) by using first principles molecular dynamics simulation. It was found that the experimentally reported "cubic" structure is unstable at low temperature and∕or high pressure: The "cubic" structure reflects the symmetry at high (room) temperature where the hydrogen bond network is disordered and the hydrogen molecules are orientationally disordered due to thermal rotation. In this sense, the "cubic" symmetry would definitely be lowered at low temperature where the hydrogen bond network and the hydrogen molecules are expected to be ordered. At room temperature and below 30 GPa, it is the thermal effects that play an essential role in stabilizing the structure in "cubic" symmetry. Above 60 GPa, the hydrogen bonds in the framework would be symmetrized and the hydrogen bond order-disorder transition would disappear. These results also suggest the phase behavior of other filled-ice hydrates. In the case of rare gas hydrate, there would be no guest molecules' rotation-nonrotation transition since the guest molecules keep their spherical symmetry at any temperature. On the contrary methane hydrate MH-III would show complex transitions due to the lower symmetry of the guest molecule. These results would encourage further experimental studies, especially nuclear magnetic resonance spectroscopy and neutron scattering, on the phases of filled-ice hydrates at high pressures and∕or low temperatures.  相似文献   

15.
16.
With the development of new synthesis procedures, an ever increasing number of chemical modifications can now be incorporated into synthetic oligonucleotides, representing new challenges for analytical chemists to efficiently identify and characterize such molecules. While conventional mass spectrometry (MS) has proven to be a powerful tool to study nucleic acids, new and improved methods and software are now needed to address this emerging challenge. In this report, we describe a simple yet powerful program that affords great flexibility in the calculation of theoretical masses for conventional as well as modified oligonucleotide molecules. This easy to use program can accept input oligonucleotide sequences and then calculate the theoretical mass values for full length products, process impurities, potential metabolites, and gas phase fragments. We intentionally designed this software so that modified nucleotide residues can be incorporated into oligonucleotide sequences, and corresponding mass values can be rapidly calculated. To test the utility of this program, two oligonucleotides that contain a large number of chemical modifications were synthesized. We have analyzed these samples using a Q-TOF mass spectrometer and compared the calculated masses to the observed ones. We found that all of the data matched very well with less than 30 ppm mass errors, well within the expectation for our instrument operated in its current mode. These data confirmed the validity of calculations performed with this new software.
Figure
?  相似文献   

17.
18.
与传统的传感器设备阵列相比,由于结构更为简单,具有广泛检测兼容性的光纤系统逐渐成为分布式监测的有力候选者。然而,受工作机制的限制,大多数光纤传感器仍局限于对折射率等物理参数进行探测,一种用于环境化学监测的全光纤分布式传感系统亟待研发。本工作中,我们向化学气相沉积法生长的石墨烯光子晶体光纤(Gr-PCF)中引入了一种化学传感机制。初步结果表明,石墨烯光子晶体光纤可以选择性地检测浓度为ppb级的二氧化氮气体,并在液体中表现出离子敏感性。石墨烯光子晶体光纤与光纤通信系统的波分、时分复用技术结合后,将为实现分布式光学传感环境问题提供巨大的潜力和机会。  相似文献   

19.
We make a mathematical analysis of the structure of the two dimensional lattice formed by the centers of parallely aligned and arbitrarily oriented spherocylindrical phospholipidic molecules hexagonally packed in cylindrical domains forming a monomolecular Langmuir film at the liquid–gas interface. The analysis is carried out as a function of the tilting angle and the tilting azimuth . We give a number of expressions for the lattice radius vector, and introduce the Lattice Generating Operator. We also present a number of theorems dealing with the existence and characteristics of the common points of tangency, the double stationary points, the locus circles, and the envelop circles, related to the lattice sites.  相似文献   

20.
Gas-liquid distribution coefficients at ideal dilution in non-volatile solvents can be measured by gas chromatography. The numerical value of a coefficient depends on the choice of the concentration unit in the solvent and in the gas phase. The relationships between different coefficients characterizing gas-liquid equilibria are discussed and summarized. Coefficients determined at several temperatures permit calculation of the standard chemical potential difference of the solute with the ideal gas phase as reference as a function of temperature, the g-SPOT. Following the proposal of Kirchhoff the latter can be formulated as an equation with three constants. As in the gas phase the molecules of the solute have no interacting partners, the three constants, deltaH, deltaS and deltaC, characterize the interaction between solvent and solute molecules. They will be called the "solute-solvent interaction parameters". In the same system the values of these parameters depend on the choice of the distribution coefficient. Five different distribution coefficients result five sets of interaction parameters. It is shown that conversion of a parameter set to another implies additive corrections independent of the nature of the solute. If g-SPOT-s are measured in a series of solvents, the data may be used to calculate the corresponding liquid-liquid partition coefficients by electing one of the solvents as reference (l-SPOT). The corresponding "relative interaction parameters" can be calculated by simple substraction. In a second chapter the precautions are summarized, necessary for gas chromatographic determination of distribution coefficients and examples are given for interaction parameters in different systems. It is concluded that there are significant differences between g-SPOT-s related to different distribution coefficients. On the other hand, differences between l-SPOT-s are negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号