首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new family of photoluminescent neutral and anionic di-carboranyl and tetra-carboranyl derivatives have been synthesized and characterized. The reaction of α,α'-bis(3,5-bis(bromomethyl)phenoxy-m-xylene with 4 equiv. of the monolithium salt of 1-Ph-1,2-C(2)B(10)H(11) or 1-Me-1,2-C(2)B(10)H(11) gives the neutral tetracarboranyl-functionalized aryl ether derivatives closo-1 and closo-2, respectively. The addition of the monolithium salt of 1-Ph-1,2-closo-C(2)B(10)H(11) to α,α,'-dibromo-m-xylene or 2,6-dibromomethyl-pyridine gives the corresponding di-carboranyl derivatives closo-3 and closo-4. These compounds, which contain four or two closo clusters, were degraded using the classical method, KOH in EtOH, affording the corresponding nido species, which were isolated as potassium or tetramethylammonium salts. All the compounds were characterized by IR, (1)H, (11)B and (13)C NMR spectroscopy, and the crystal structure of closo-3 was analysed by X-ray diffraction. The carboranyl fragments are bonded through CH(2) units to different organic moieties, and their influence on the photoluminescent properties of the final molecules has been studied. All the closo- and nido-carborane derivatives exhibit a blue emission under ultraviolet excitation at room temperature in different solvents. The fluorescence properties of these closo and nido-derivatives depend on the substituent (Ph or Me) bonded to the C(cluster), the solvent polarity, and the organic unit bearing the carborane clusters (benzene or pyridine). In the case of nido-derivatives, an important effect of the cation is also observed.  相似文献   

2.
Products of the reaction of nido-1,2-(CpRuH)(2)B(3)H(7), 1, and phenylacetylene demonstrate the ways in which cluster metal and main group fragments can combine with an alkyne. Observed at 22 degrees C are (a) reduction to mu-alkylidene Ru-B bridges (isomers nido-1,2-(CpRu)(2)(1,5-mu-C{Ph}Me)B(3)H(7), 2, and nido-1,2-(CpRu)(2)(1,5-mu-C{CH(2)Ph}H)B(3)H(7), 3), (b) reduction to exo-cluster alkyl substituents on boron (nido-1,2-(CpRuH)(2)-3-CH(2)CH(2)Ph-B(3)H(6), 4), (c) cluster insertion with extrusion of a BH(2) fragment into an exo-cluster bridge (nido-1,2-(CpRu)(2)(mu-H)(mu-BH(2))-4-or-5-Ph-4,5-C(2)B(2)H(5), 5), (d) combined insertion with BH(2) extrusion and reduction (nido-1,2-(CpRu)(2)(mu-H)(mu-BH(2))-3-CH(2)CH(2)Ph-5-Ph-4,5-C(2)B(2)H(4), 6), (e) insertion and loss of borane with and without reduction (nido-1,2-(CpRu)(2)-5-Ph-4,5-C(2)B(2)H(7), 7, and isomers nido-1,2-(CpRu)(2)-3-CH(2)CH(2)Ph-4-(and-5-)Ph-C(2)B(2)H(6), 8 and 9), and (f) insertion and borane loss plus reduction (nido-1,2-(CpRu)(2)-3-(trans-CH=CHPh)-5-Ph-4,5-C(2)B(2)H(6), 10). Along with 7, 8, and 10, the reaction at 90 degrees C generates products of insertion and nido- to closo-cluster closure (closo-4-Ph-1,2-(CpRuH)(2)-4,6-C(2)B(2)H(3), 11, closo-1,2-(CpRuH)(2)-3-CH(2)CH(2)Ph-5-Ph-7-CH(2)CH(2)Ph-4,5-C(2)B(3)H(2), 12, closo-1,2-(CpRuH)(2)-5-Ph-4,5-C(2)B(3)H(4), 13, and isomers closo-1,2-(CpRuH)(2)-3-and-7-CH(2)CH(2)Ph-5-Ph-4,5-C(2)B(3)H(3), 14 and 15). The clusters with an exo-cluster bridging BH(2) groups are shown to be intermediates by demonstrating that the major products 5 and 6 rearrange to 13 and convert to 14, respectively. 14 then isomerizes to 15, thus connecting low- and high-temperature products. Finally, all available information shows that the high reactivity of 1 with alkynes can be associated with the "extra" two Ru-H hydrides on the framework of 1 which are required to meet the nido-cluster electron count.  相似文献   

3.
Syntheses, properties, and synthetic applications of 13-vertex closo- and nido-carboranes are reported. Reactions of the nido-carborane salt [(CH2)3C2B10H10]Na2 with dihaloborane reagents afforded 13-vertex closo-carboranes 1,2-(CH2)3-3-R-1,2-C2B11H10 (R = H (2), Ph (3), Z-EtCH=C(Et) (4), E-(t)BuCH=CH (5)). Treatment of the arachno-carborane salt [(CH2)3C2B10H10]Li4 with HBBr2.SMe2 gave both the 13-vertex carborane 2 and a 14-vertex closo-carborane (CH2)3C2B12H12 (8). On the other hand, the reaction of [C6H4(CH2)2C2B10H10]Li4 with HBBr2.SMe2 generated only a 13-vertex closo-carborane 1,2-C6H4(CH2)2-1,2-C2B11H11 (9). Electrophilic substitution reactions of 2 with excess MeI, Br2, or I2 in the presence of a catalytic amount of AlCl3 produced the hexa-substituted 13-vertex carboranes 8,9,10,11,12,13-X6-1,2-(CH2)3-1,2-C2B11H5 (X = Me (10), Br (11), I (12)). The halogenated products 11 and 12 displayed unexpected instability toward moisture. The 13-vertex closo-carboranes were readily reduced by groups 1 and 2 metals. Accordingly, several 13-vertex nido-carborane dianionic salts [nido-1,2-(CH2)3-1,2-C2B11H11][Li2(DME)2(THF)2] (13), [[nido-1,2-(CH2)3-1,2-C2B11H11][Na2(THF)4]]n (13a), [[nido-1,2-(CH2)3-3-Ph-1,2-C2B11H10][Na2(THF)4]]n (14), [[nido-1,2-C6H4(CH2)2-1,2-C2B11H11][Na2(THF)4]]n (15), and [nido-1,2-(CH2)3-1,2-C2B11H11][M(THF)5] (M = Mg (16), Ca (17)) were prepared in good yields. These carbon-atom-adjacent nido-carboranes were not further reduced to the corresponding arachno species by lithium metal. On the other hand, like other nido-carborane dianions, they were useful synthons for the production of super-carboranes and supra-icosahedral metallacarboranes. Interactions of 13a with HBBr2.SMe2, (dppe)NiCl2, and (dppen)NiCl2 gave the 14-vertex carborane 8 and nickelacarboranes [eta5-(CH2)3C2B11H11]Ni(dppe) (18) and [eta5-(CH2)3C2B11H11]Ni(dppen) (19), respectively. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Some were further confirmed by single-crystal X-ray diffraction studies.  相似文献   

4.
Liu G  Zhang J  Wu B  Wang J 《Organic letters》2007,9(21):4263-4266
Ruthenium carbene complexes 9 with a closo-1,2-C(2)B(10)H(11) tag and 10 with an ionic [nido-7,8-C(2)B(9)H(11)](-) tag were synthesized. Both 9 and 10 are highly reactive catalysts for olefin metathesis reactions. Importantly, 10 is a robust and recyclable anion-appended catalyst that was suitable for noncovalent binding with many cationic resins. At least ten recycles were achieved for RCM of the selected substrate using 10 as the catalyst in ionic liquids.  相似文献   

5.
The molecular structures of two carbaboranes, closo-2,3-C(2)B(9)H(11) and nido-2,9-C(2)B(9)H(13), were determined experimentally for the first time using gas-phase electron diffraction (GED). For closo-2,3-C(2)B(9)H(11), a model with C(2)(v)() symmetry was refined to give C-B bond distances ranging 158.3-167.0 pm and B-B distances ranging 177.4-200.0 pm. The structure of nido-2,9-C(2)B(9)H(13) was refined using a model with C(s)() symmetry to give C-B bond lengths ranging 160.3-171.9 pm and B-B lengths ranging 173.0-196.1 pm. Ab initio computations (up to MP2/6-311+G) were also carried out on these and the related nido-7,8-C(2)B(9)H(13), which was not sufficiently stable to allow determination of its molecular structure by GED.  相似文献   

6.
Reactions of both closo-9,12-I2-1,2-C2B10H10 and closo-9,10-I2-1,7-C2B10H10 with an excess of aryl magnesium bromide in the presence of [PdCl2(PPh3)2] afford the corresponding closo-9,12-(4-R-C6H4)2-1,2-C2B10H10 [R=H (1), Me (2), OMe (3), SMe (4), N(CH3)2 (5), Cl (6)] and closo-9,10-(4-R-C6H4)2-1,7-C2B10H10 [R'=Me (7), OMe (8), N(CH3)2 (9), Cl (10), and -C[(OCH2)2]CH3 (11)] compounds in high yields. The anisole derivatives 3 and 8 were deprotected to yield the corresponding bis-phenols 12 and 13, respectively. Structural analyses of compounds 1, 3, 6, and 12 are reported. Re-etherification of compound 12 by using gamma-bromotriethyleneglycol methyl ether provided 14 (R=(CH2CH2O)3CH3). Oxidation of 4 with ceric(IV) ammonium nitrate (CAN) generated the bis-sulfoxide 15 (R=S(O)Me). Deprotection of compound 11 led to the corresponding acetyl derivative 18 (R'=C(O)Me). Bis-anisole 3 was tethered with 1,3-dibromopropane, 1,6-dibromohexane, 1,8-dibromooctane, 4,4'-bis(iodomethyl)-1,1'-biphenyl, and alpha,alpha'-dibromo-2,6-lutidine to afford the dimers 20b, 21b, 22b, 23b, and 24b, respectively. The tetrameric carboracycles 27a and 30a, as well as the dimeric 29c were obtained through repetitive coupling of the dimeric compounds 20b, 24b, and 22b with 1,3-dibromopropane, alpha,alpha'-dibromo-2,6-lutidine, and 1,8-dibromooctane, respectively. The tetrameric carboracycle 28a was obtained upon consecutive reactions of 1 with 1,4-dibromobutane. Hexameric carboracycle 28b was identified as a byproduct. Exhaustive ether cleavage of 27a generated octaphenol 31a. Re-etherification of 31a with trimethylenesultone provided the octasulfonate 32a, the first example of a water-soluble carboracycle. Linkage of dimer 23b with alpha,alpha'-dibromolutidine yielded the cyclic tetrameric tetrapyridyl derivative 30a in low yield. The structures of the carboracycles 27a, 28a, 28b, and 30a have been confirmed by Xray crystallography. In addition, the compounds 28a,b are the first reported carboracycles that interact with solvent molecules in a host-guest fashion.  相似文献   

7.
Icosahedral heteroboranes and especially metallacarboranes, which have recently been shown to act as potent HIV-1 protease inhibitors, are a unique class of chemical compounds with unusual properties, one of which is the formation of dihydrogen bonds with biomolecules. In this study, we investigate the effect of various metal vertices and exo-substitutions on several series of heteroboranes, including 11-vertex carborane cages [nido-7,8-C2B9Hn]n-13(n= 11,12,13), closo-1-SB11H11, closo-1-NB11H12, metal bis(dicarbollides)[3,3'-M (1,2-C2B9H11)2]n(M/n=Fe/2-, Co/1-, Ni/0) and fluoro (F), amino (NH2) and hydroxo (OH) derivatives of the metal bis(dicarbollides). Besides the properties of isolated systems (geometries, electronic properties and hydration), we study their interactions with a tetrapeptide, which models their biomolecular partner. Calculations have confirmed that the extra hydrogen in [nido-7,8-C2B9H12]- forms a bridge, which fluctuates between two stationary states. Using RESP-derived charges, it was ascertained that the negative charge of heteroboranes is located mainly on boron-bound hydrogens. An increase of the negative total charge (from 0 to -1 or -2) of heteroboranes yields an increase in the stabilisation energies of heteroborane[dot dot dot]peptide complexes and also a substantial increase in the hydration free energies of heteroboranes. Compared to the substitutions of metal vertices, the exo-substitutions of metallacarboranes cause a larger increase in stabilisation energies and a smaller increase in desolvation penalties. These two terms, stabilisation energies and desolvation penalties, contribute in opposite directions to the total heteroborane-biomolecule binding energy and must both be taken into account when designing new HIV-1 protease inhibitors.  相似文献   

8.
Alkynes R(1)R(2)C(2) react with the neutral monocarbaborane arachno-4-CB(8)H(14) (1) at elevated temperatures (115-120 degrees C) under the formation of the derivatives of the ten-vertex dicarbaborane nido-5,6-C(2)B(8)H(12) (2) of general formula 9-Me-5,6-R1,R2-nido-5,6-C(2)B(8)H(9) (where R1,R2 = H,H 2a; Me,Me 2b; Et,Et 2c, H,Ph 2d, and Ph,Ph 2e) in moderate yields (26-52%). Side reaction with PhC(2)H also yields 1-Ph-6-Me-closo-1,2-C(2)B(8)H(8) (3d). In contrast, the reaction between [arachno-4-CB(8)H(13)](-) anion ((-)) and PhC(2)H produces a mixture of the closo anions [1-CB7H8]- (4-) and [1-CB6H7]- (5-) (yields 32 and 24%, respectively). Individual compounds were isolated and purified by liquid chromatography and characterized by NMR spectroscopy ((11)B, (1)H and (13)C) combined with two-dimensional [(11)B-(11)B]-COSY and (1)H-{(11)B(selective)}NMR techniques.  相似文献   

9.
Reactions of the [K]+ salts of the [nido-7,9-C2B9H12]- anion (2) and its C-phenylated derivative [7-Ph-nido-7,9-C2B9H11]- (4) with [OsCl2(PPh3)3] (3) proceed in benzene at ambient temperature with the formation of 16-electron chlorohydrido-Os(IV) exo-nido complexes, [exo-nido-10,11-{(Ph3P)2OsHCl}-10,11-(mu-H)2-7-R-7,9-C2B9H8] (5: R = H; 6: R = Ph), along with the small amounts of the charge-compensated nido-carboranes [nido-7,9-C2B9H11PPh3] (7) and [7-Ph-nido-7,9-C2B9H10PPh3] (8) as byproducts. However, when carried out under mild heating in ethanol, the reaction of 2 with 3 selectively afforded a 16-electron dihydrido-Os(IV) exo-nido complex [exo-nido-10,11-{(Ph3P)2OsH2}-10,11-(mu-H)2-7,9-C2B9H9] (9). Structures of both complexes 5 and 9 have been confirmed by single-crystal X-ray diffraction studies, which revealed that nido-carboranes in these species function as a bidentate dicarbollide ligands [7-R-nido-7,9-C2B9H10]2- linked to the Os(IV) center via two B-H...Os bonds involving adjacent B-H vertices in the upper CBCBB belt of the carborane cage. Thus, compounds 5 and 9 represent the first structurally characterized exo-nido-metallacarboranes based on meta-dicarbollide-type ligands. Variable-temperature 1H and 31P{1H} NMR experiments indicate that complex 9 is fluxional in solution and shows an unusual exchange between terminal Os-(H)2 and bridging {B-H}2...Os hydrogen atoms. Upon heating in d8-THF at 65 degrees C, complex 9 converts irreversibly to its closo isomer [2,2-(PPh3)2-2,2-H2-closo-2,1,7-OsC2B9H11] (13), which could thus be obtained as a pure crystalline solid. The structure of 13 has been established on the basis of analytical and multinuclear NMR data and a single-crystal X-ray diffraction study.  相似文献   

10.
Reaction of nido-1,2-(Cp*RuH)2B3H7, 1, and methyl acetylene monocarboxylate under kinetic control generates nido-1,2-(Cp*Ru)2(mu-C[[CO2Me]Me])B3H7 (a pair of geometric isomers, 3 and 5) and nido-1,2-(Cp*Ru)2(1,3-mu-C[[CH2CO2Me]H])B3H7, 4, which display the first examples of exo-cluster mu-alkylidene Ru-B bridges generated by hydrometalation of an alkyne on the cluster framework. Both 3 and 5, but not 4, rearrange into arachno-2,8-mu(C)-5-eta1(O)-Me[CO2Me]C-1,2-(Cp*Ru)2B3H7, 2, in which an unprecedented intramolecular coordination of the carbonyl oxygen atom of the alkyne substituent to a boron framework site opens the ruthenaborane skeleton. Compound 2, in turn, is an intermediate in the formation of the ruthenacarborane nido-1,2-(Cp*Ru)2-3-OH-4-OMe-5-Me-4,5-C2B2H5, 12, in which the carbonyl-oxygen double bond has been cleaved as its oxygen atom inserts into a B-H bond and the carbonyl carbon inserts into the metallaborane framework. In a parallel reaction pathway, nido-1,2-(Cp*Ru)2-5-CO2Me-4,5-C2B2H7, 6, nido-1,2-(Cp*Ru)2-4-B(OH)2-5-CO2Me-4,5-C2B2H6, 16, and nido-1,2-(Cp*Ru)2(mu-H)(mu-BH2)-3-(CH2)2CO2Me-CO2Me-4,5-C2B2H4 (a pair of geometric isomers, 7 and 14, which contain an unusual Ru-B borane bridge) are formed. On heating, 7 rearranges to yield nido-1,2-(Cp*Ru)2-3-(CH2)2CO2Me-4-BH2-5-CO2Me-4,5-C2B2H5, 13, whereas 14 converts to nido-1,2-(Cp*Ru)2-3-(CH2)2CO2Me-4-CO2Me-4,5-C2B2H6, 8. Under thermodynamic control, nido-1,2-(Cp*Ru)2-4,5-B[(CH2)2CO2Me]CO(MeO)[C(CH2)CO2Me]-4,5-C2B2H6, 11, is the major product accompanied by lesser amounts of 6 and 1,2-(Cp*Ru)2-4-OMe-5-Me-4,5-C2B2H6, 10. Compound 11 features a five-membered heterocycle containing a boron atom. The structure of 7, which is an intermediate in the formation of 11, provides the basis for an explanation of this complex condensation of three alkynes. A previously unrecognized role for an exo-cluster bridging borene generated from the metallaborane skeleton by addition of the alkyne is also a feature of this chemistry. Reinsertion or loss of this boron fragment accounts for much of the chemistry observed. NMR experiments reveal labile intermediates, and one has been sufficiently characterized to provide mechanistic insight on the early stages of the alkyne-metallaborane addition reaction. All isolated compounds have been spectroscopically characterized, and most have been structurally characterized in the solid state.  相似文献   

11.
利用密度泛函方法在B3LYP/6-31G(d)水平上对1,2-C2B10H12的两种异腈类衍生物的结构特性进行了研究. 结果表明, 1,2-C2B10H11NC的活性较强; 1,2-C2B10H11NC和1,2-C2B10H11CH2NC可以通过结构中的C4原子与过渡金属原子成键而形成碳硼烷异腈金属配合物. 1,2-C2B10H11NC和1,2-C2B10H11CH2NC的分子极性均比1,2-C2B10H12的弱, 这不利于它们在硼中子捕获疗法中的应用.  相似文献   

12.
The icosahedral dicarboranes and their decapitated anion, 1-R'-1,2-C(2)B(10)H(10) (closo) and [7-R'-7,8-C(2)B(9)H(10)](-) (nido), exert a distict influence at the alpha position of substituents attached to the cage carbon atom. The closo fragment is electron-withdrawing while the nido anion is electron-releasing. These effects are studied by (31)P NMR, phosphorus oxidation, and phosphorus protonation in [7-PR(2)-8-R'-7,8-C(2)B(9)H(10)](-) species. The (31)P NMR chemical shift dependence is related to the R alkyl or aryl nature of [7-PR(2)-8-R'-7,8-C(2)B(9)H(10)](-). No direct relationship to the nature of the R substituent on the nido-carboranylmonphosphine toward oxidation has been found. The basicity of the nido-alkylcarboranylmonophosphines is the highest while the lowest corresponds to the nido-arylcarboranylmonophosphines. Interpretation can be carried out qualitatively by considering the electronic properties of the cluster and the nature of the R groups. The influence of R' is less relevant. Confirmation of the molecular structure of the oxidated and protonated nido-carboranylmonophosphine compounds was obtained by X-ray diffraction analysis of [NBu(4)][7-P(O)Ph(2)-8-Ph-7,8-C(2)B(9)H(10)] and [7-PH((i)Pr)(2)-8-Me-7,8-C(2)B(9)H(10)].  相似文献   

13.
Russian Chemical Bulletin - commo-Ferracarboranes and [8-{(nido-7″,8″-C2B9H11-9″(11″)-)Ph2PCH2CH2PPh2}-commo-3,3′-Fe-{1,2-C2H9B10}{1′2′-C2B9H11}] were...  相似文献   

14.
Thermolysis in the solid state of Cs+[arachno-CB9H14]-, or of Cs+[nido-CB9H12]-, or the oxidation of nido-1-CB8H12 with I2 in THF at -78 degrees C in the presence of NEt3, gives the first nine-vertex closo monocarbaborane, the stable [closo-4-CB8H9]- anion, in yields of 56, 61 and 75%, respectively.  相似文献   

15.
The reaction between the carborane arachno-4,6-C2B7H13 (1) and PCl3 in dichloromethane in the presence of a "proton sponge" (PS = 1,8-dimethylaminonaphthalene) resulted in the isolation of the eleven-vertex nido-diphosphadicarbaboranes 7,8,9,11-P2C2B7H, (2) and 3-Cl-7,8,11-P2C2B7H, (3-Cl-2) in yields of 54 and 7%, respectively. Replacement of the PS by NEt3 in the same reaction gave diphosphadicarbaboranes 2 and 3-CI-2 together with the isomeric species nido-7,9,8,10-P2C2B7H, (3) in yields of 28, 15 and 3%, respectively. The reaction between the isomeric carborane arachno-4,5-C2B7H13 (4) and PCl3 in dichloromethane in the presence of PS gave the asymmetrical isomer, nido-7,8,9,10-P2C2B7H, (5). along with the chloro derivatives 4-Cl-7,8,9,10-P2C2B7H8 (4-Cl-5) and 11-Cl-7,8,9,10-PC2B7,H8 (11-Cl-5) (yields of 21, 1 and 13%, respectively). The structures of the chlorinated derivatives 3-Cl2 and 11 -Cl-5 were determined by X-ray diffraction analysis. In addition, the structures of all compounds isolated were geometry-optimised and confirmed by comparison of experimental 11B chemical shifts with those calculated by the GIAO-SCF/II//RMP2(fc)/6-31G* method. The calculations also include the structure and 11B NMR shifts of the isomer nido-7,10,8,9-P2C2B7H9 (6) which has not yet been isolated.  相似文献   

16.
Reactions between closo-1,2-C(2)B(8)H(10) (1) and amines of general formulation R(1)R(2)NH (where R(1), R(2) = H, H; Me, H; t-Bu, H and Et, Et) resulted in a straightforward cluster expansion and formation of the 11-vertex arachno-azadicarbaboranes of the 1,1-R(1),R(2-)1,6,9-NC(2)B(8)H(11) (2) cluster constitution (where R(1), R(2) = H, H 2a; Me, H 2b; t-Bu, H 2c and Et, Et 2d) in yields 10-75%, depending on the nature of the amine used. The reactions are the first example of a direct closo to arachno transformation in the area of cluster-boron compounds. Compounds 2b and 2c were isolated in two isomeric forms anti- and syn- that differ in the positioning of the t-Bu substituent with respect to the bridging hydrogen site. Deprotonation of compounds 2 generally leads to removal of the bridging proton and formation of the [1,1-R(1),R(2-)1,6,9-NC(2)B(8)H(11)](-) (2-) anions that, in the case of the monoalkylated Me and t-Bu derivatives, adopt only an anti configuration. The structure of anti-2c was determined by X-ray diffraction analysis and the geometries of the parent compound and the corresponding syn and anti isomers were optimised at the RMP2/6-31G* level. The composition of all compounds is consistent with the results of mass spectrometry and multinuclear ((1)H and (11)B) spectroscopy complemented by two-dimensional [(11)B-(11)B]-COSY and (1)H{(11)B(selective)} NMR measurements. Experimental (11)B chemical shifts generally show acceptable agreement with theoretical values calculated by GIAO methods, in particular at GIAO-MP2/II, where possible.  相似文献   

17.
Methodology leading to a new class of rodlike p-carborane derivatives is described, involving the palladium-catalyzed coupling of B-iodinated p-carboranes with terminal alkynes. The products of these reactions contain an alkyne substituent at a boron vertex of the p-carborane cage. Reaction of closo-2-I-1,12-C(2)B(10)H(11) (1) with closo-2-(C&tbd1;CH)-1,12-C(2)B(10)H(11) (3) in the presence of pyrrolidine and catalytic quantities of bis(triphenylphosphine)palladium dichloride and cupric iodide yields 1,2-(closo-1',12'-C(2)B(10)H(11)-2'-yl)(2) acetylene (4). Oxidative coupling of 3 in the presence of cupric chloride in piperidine affords 1,4-(closo-1',12'-C(2)B(10)H(11)-2'-yl)(2)-1,3-butadiyne (5). Reaction of 2 molar equiv. of closo-2,9-I(2)-1,12-C(2)B(10)H(10) (6) withcloso-2,9-(C&tbd1;CH)(2)-1,12-C(2)B(10)H(10) (7) in the presence of pyrrolidine and catalytic quantities of bis(triphenylphosphine)palladium dichloride and cupric iodide yields closo-2,9-(closo-2'-I-9'-C&tbd1;C-1',12'-C(2)B(10)H(10))(2)-1,12-C(2)B(10)H(10) (8), a rigid, iodine-terminated carborod trimer in which the p-carborane cages are linked at the 2 and 9 B-vertices by alkyne (C&tbd1;C) bridges. The molecular structures of 5 and the previously described closo-2,9-(C&tbd1;CSiMe(3))(2)-1,12-C(2)B(10)H(10) (9) have been determined by X-ray crystallography. Crystallographic data are as follows: for 5, monoclinic, space group P2/a, a = 12.352(6) ?, b = 14.169 (6) ?, c = 12.384(5) ?, beta = 109.69(2) degrees, V = 2041 ?(3), Z = 4, R = 0.098, R(w)( )()= 0.135; for 9, monoclinic, space group C2/m, a = 22.111(4) ?, b = 7.565(2) ?, c = 6.943(2) ?, beta = 107.871(8) degrees, V = 1105 ?(3), Z = 2, R = 0.059, R(w)( )()= 0.090.  相似文献   

18.
Full structural characterisation and complete synthetic procedures for three monohalogenated cobaltacarborane compounds closo-[3-Co(eta5-C5H5)-8-X-1,2-C2B9H10] (X=Cl (1), Br (2), I (3)) and the dibromo derivative closo-[3-Co(eta5-C5H5)-8,9-Br2-1,2-C2B9H9] (4) are reported. The supramolecular structures of 1, 3, and 4 reveal the existence of intermolecular C--HX--B interactions. The role of these interactions has been investigated through a CSD search and subsequent analysis of the reported crystalline compounds. The results show that halogens become reasonably good hydrogen-bond acceptors when bonded to boron and, in this respect, are comparable in strength to metal-bound halogens.  相似文献   

19.
Rotation about the centroid/metal/centroid axis in ferrocene is facile; the activation energy is 1-5 kcal mol(-1). The structurally similar sandwich complexes derived from closo-[3-Co(eta5-NC4H4)-1,2-C2B9H11] (1) have a different rotational habit. In 1, the cis rotamer in which the pyrrolyl nitrogen atom bisects the carboranyl cluster atoms is 3.5 kcal mol(-1) more stable in energy than the rotamer that is second lowest in energy. This cis rotamer is wide, spanning 216 degrees , and may be split into three rotamers of almost equal energy by substituting the N and the carboranyl carbon atoms adequately. To support this statement, closo-[3-Co(eta5-NC4H4)-1,2-(CH3)2-1,2-C2B9H9] (2), closo-[3-Co(eta5-NC4H4)-1,2-(mu-CH2)3-1,2-C2B9H9] 3, 2-->BF3, and 3-->BF3 have been prepared. Two rotamers are found at low temperature for 2-->BF(3) and 3-->BF3. Compounds 2, 3, and 1-->BF3 behave similarly to 1. Rotational energy barriers and the relative populations of the different energy states are calculated from 1H DNMR spectroscopy (DNMR, dynamic NMR). These results agree with those of semiempirical calculations. Without exception, the cis rotamer is energetically the more stable. The fixed conformation of 1 assists in elucidating the rotational preferences of the [3,3'-Co(1,2-C2B9H11)2]- ion in the absence of steric hindrance; the [3,3'-Co(1,2-C2B9H11)2]- ion is commonly accepted to present a cisoid orientation. Complex 1 is electronically similar to the [3,3'-Co(1,2-C2B9H11)2]- ion. Both have heteroatoms in the pi ligands, and they have the same electronegativity difference between the constituent atoms. This leads to a view of the [NC4H4]- as [7,8-C2B9H11]2- ion, with no steric implications. Therefore the [3,3'-Co(1,2-C2B9H11)2]- ion should be considered to have a cisoid structure, and the different rotamers observed to be the result of steric factors and of the interaction of the counterion with either B-H groups and/or ancillary ligands. The rotamer adopted is the one with the atoms holding the negative charges furthest apart.  相似文献   

20.
The facile synthesis of the metallaheteroborane [8,8-(PPh 3) 2- nido-8,7-RhSB 9H 10] ( 1) makes possible the systematic study of its reactivity. Addition of pyridine to 1 gives in high yield the 11-vertex nido-hydridorhodathiaborane [8,8,8-(PPh 3) 2H-9-(NC 5H 5)- nido-8,7-RhSB 9H 9] ( 2). 2 reacts with C 2H 4 or CO to form [1,1-(PPh 3)(L)-3-(NC 5H 5)- closo-RhSB 9H 8] [L = C 2H 4 ( 3), CO ( 4)]. In CH 2Cl 2 at reflux temperature 2 undergoes a nido to closo transformation to afford [1,1-(PPh 3) 2-3-(NC 5H 5)- closo-1,2-RhSB 9H 8] ( 5). Reaction of 2 with alkenes leads to hydrogenation and isomerization of the olefins. NMR spectroscopy indicates the presence of a labile phosphine ligand in 2, and DFT calculations have been used to determine which of the two phosphine groups is labile. Rationalization of the hydrogenation mechanism and the part played by the 2 --> 3 nido to closo cluster change during the reaction cycle is suggested. In the proposed mechanism the classical hydrogen transfer from hydride metal complexes to olefins occurs twice: first upon coordination of the alkene to the rhodium centre in 2, and second concomitant with formation of a closo-hydridorhodathiaborane intermediate by migration of a BHB-bridging hydrogen atom to the metal. Reaction of H 2 with 3 or 5 regenerates 2, closing a reaction cycle that under catalytic conditions is capable of hydrogenating alkenes. Single-site versus cluster-bifunctional mechanisms are discussed as possible routes for H 2 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号