首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A procedure is developed for simultaneous shape and topology design optimization of linear elastic two-dimensional continuum structures. An intuitive approach is presented to treat such topological problems whereby material is eliminated from within the structure (by introducing holes at regions of low stress) through a sequence of shape optimization processes. A mathematical programming technique coupled with the boundary element (BE) method of response and sensitivity analyses enables the optimal positioning of these holes plus optimization of the overall structural shape. The analytical derivative BE formulation is explained together with the use of appropriate design velocity fields, and example problems are solved to demonstrate the optimization procedure.  相似文献   

2.
In this paper, a new boundary element (BE) approach is proposed to determine the singular stress field in plane V-notch structures. The method is based on an asymptotic expansion of the stresses in a small region around a notch tip and application of the conventional BE in the remaining region of the structure. The evaluation of stress singularities at a notch tip is transformed into an eigenvalue problem of ordinary differential equations that is solved by the interpolating matrix method in order to obtain singularity orders (degrees) and associated eigen-functions of the V-notch. The combination of the eigen-analysis for the small region and the conventional BE analysis for the remaining part of the structure results in both the singular stress field near the notch tip and the notch stress intensity factors (SIFs).Examples are given for V-notch plates made of isotropic materials. Comparisons and parametric studies on stresses and notch SIFs are carried out for various V-notch plates. The studies show that the new approach is accurate and effective in simulating singular stress fields in V-notch/crack structures.  相似文献   

3.
The response of cracked bodies subjected to loading was investigated by the boundary element method in this paper. The two-law elastic-cohesive-softening model was used for crack propagation analysis. The interface conditions for uncracked, craze, open crack, adhesive crack and slid crack parts were discussed and the corresponding incremental iteration algorithm was given. A simplified damage propagation model was presented. The technique has been applied to some specific examples which give the evidence that the method is satisfactory and efficient.  相似文献   

4.
In this paper,the nonsingular fundamental solutions are obtained from Fourierseries under some given conditions.These solutions can be taken as the kernels ofintegral equation.So a new boundary element method is presented,with which allkinds of thin-plate bending problems can’be solved,even with complicated loadings andsinuous boundaries.The calculation is much simpler and more accurate.  相似文献   

5.
This paper presents a boundary element formulation employing a penalty function technique for two-dimensional steady thermal convection problems. By regarding the convective and buoyancy force terms in Navier-Stokes equations as body forces, the standard elastostatics analysis can be extended to solve the Navier-Stokes equations. In a similar manner, the standard potential analysis is extended to solve the energy transport equation. Finally, some numerical results are included, for typical natural convection problems, in order to demonstrate the efficiency of the present method.  相似文献   

6.
本文从壳体位移的三个微分方程出发,采用付立叶积分变换的基本解,利用加权残值法推导了几何非线性边界积分方程。这种基本解的壳体边界元法类似于板的非线性边界元法,各种变量物理意义明确,能方便地处理各种复杂边界条件及有开口情况。文末算例说明本文方法的可行性、收敛性和精确性,并与二变量边界单元法或有限元结果相比较,吻合较好。  相似文献   

7.
The Boundary Element Method is now well established as a valid numerical technique for the solution of field problems, equal to the Finite Element Method in generality and surpassing it in computational efficiency in some cases.1 In this paper is presented a 'Regular Boundary Element Method' as applied to inviscid laminar fluid flow problems. It involves the formation of a system of regular integral equations obtained by moving the singularity outside the domain of the given problem. It is also shown that non-conforming elements may be used whereby freedoms are not defined at the geometric nodes under the boundary element discretization. A linear element is developed here; higher order variants could easily be defined. Satisfactory numerical results have been obtained using the proposed regular method with both conventional (continuous across the boundary) and non-conforming boundary elements for two-dimensional inviscid laminar fluid flow problems having regular and singular solutions.  相似文献   

8.
Some further results of the boundary element method for the Kirchhoff type plate bending problems are given. The direct boundary integral equation-boundary element scheme with higher conforming properties is used for several computation examples. The results of computation show that the numerical scheme seems to be more economical in computer time and with better accuracy in comparison with some previous results.  相似文献   

9.
Stochastic boundary element method in elasticity   总被引:1,自引:0,他引:1  
The stochastic boundary element method is developed to analyze elasticity problems with random material and/or geometrical parameters and randomly perturbed boundaries. Based on the first-order Taylor series expansion, the boundary integration equations concerning the mean and deviation of the displacements are derived, respectively. It is found that the randomness of material parameters is equivalent to a random body force, so the mean and covariance matrices of unknown boundary displacements and tractions can be obtained. Furthermore, the mean and covariance of displacements and stresses at inner points can also be obtained. Numerical examples show that the proposed stochastic boundary element method gives satisfactory solutions, as compared with those obtained by theoretical analysis or other numerical methods. The project supported by the National Natural Science Foundation of China and the State Education Commission Foundation of China  相似文献   

10.
An improved version of the regular boundary element method, the artificial boundary node approach, is derived. A simple contact algorithm is designed and implemented into the direct boundary element, regular boundary element and artificial boundary node approaches. The exisiting and derived approaches are tested using some case studies. The results of the artificial boundary node approach are compared with those of the existing boundary element program, the regular element approach, ANSYS and analytical solution whenever possible. The results show the effectiveness of the artificial boundary node approach for a wider range of boundary offsets.  相似文献   

11.
In this research a two dimensional displacement discontinuity method (which is a kind of indirect boundary element method) using higher order elements (i.e. a source element with a cubic variation of displacement discontinuities having four sub-elements) is used to obtain the displacement discontinuities along each boundary element. In this paper, three kinds of the higher order boundary elements are used: the ordinary elements, the kink elements and the special crack tip elements.The boundary collocation technique is used for the calculation of the displacement discontinuities at the center of each sub-elements. Again a special boundary collocation technique is used to treat the kinked source elements occur in the crack analysis. Considering the two source elements (each having four sub-elements) joined at a corner (kink point). The collocation points in the cubic element model which are outside of the kink point are moved to the crack kink then the displacement discontinuities on the left and right sides of the kink are calculated. The displacement discontinuities of the kink point are obtained by averaging the corresponding values of its left and right sides. The special crack tip elements are also treated by the boundary displacement collocation technique considering the singularity variation of the displacements and stresses near the crack tip. Some simple example problems are solved numerically by the proposed method. The numerical results are compared with the corresponding results obtained by the previous methods cited in the literature. This comparison shows a very good agreement between the results and verify the accuracy and validity of the proposed method.  相似文献   

12.
In this study, the stress based finite element method is coupled with the boundary element method in two different ways. In the first one, the ordinary distribution matrix is used for coupling. In the second one, the stress traction equilibrium is used at the interface line of both regions as a new coupling process. This new coupling procedure is presented without a distribution matrix. Several case studies are solved for the validation of the developed coupling procedure. The results of case studies are compared with the distribution matrix coupling, displacement based finite element method, assumed stress finite element method, boundary element method, ANSYS and analytical results whenever possible. It is shown that the coupling of the stress traction equilibrium with assumed stress finite elements gives as accurate results as those by the distribution matrix coupling.  相似文献   

13.
The behavior of loading-carrying welds joints has been studied extensively using boundary element method. The symmetric boundary element method for multiple cracks problem is derived using Betti’s reciprocal theorem. The analysis can be performed effectively in single domain. High order element is proposed to solve the double integrals. The stress intensity factors are calculated for weld root and weld toe and the critical value for class F2 and W are obtained. Formulation for the critical value is obtained for the engineering design. The results are compared with those obtained by dual boundary element method and derived from the code of practice. Finally, the theoretical fatigue life of such joints is estimated.  相似文献   

14.
基于单元子分法的结构多尺度边界单元法   总被引:3,自引:1,他引:2  
建立在基于单元子分法的一种有效自适应格式以及多区域边界元三步求解技术基础上提出了一种计算结构多尺度问题的多区域边界元法。首先,通过高斯积分误差分析公式确定边界单元在满足精度要求下所需要的高斯点数,当所需高斯点数超过规定数目时该单元就被自动划分成一定数量的子单元,从而消除结构多尺度所引起的近奇异性。在单元子分技术的基础上采用多区域边界元三步求解技术来处理材料非均质问题:第一步消除各子域的内部未知量,第二步消除各子域独自拥有的边界未知量,第三步根据位移相容性条件和面力平衡条件建立系统方程组并求解公共界面节点位移以及每个子域的其他未知量。数值算例结果表明本方法可以用较少的计算时间得到满意的结果,是处理结构多尺度问题的一种有效方法。  相似文献   

15.
IntroductionThoughsingularBoundaryelementisregardedasakindofweightedresiduals,thesingularboundaryelementhasauniquecharacteris...  相似文献   

16.
Using the hypersingular integral equation method based on body force method, a planar crack in a three-dimensional transversely isotropic piezoelectric solid under mechanical and electrical loads is analyzed. This crack problem is reduced to solve a set of hypersingular integral equations. Compare with the crack problems in elastic isotropic materials, it is shown that for the impermeable crack, the intensity factors for piezoelectric materials can be obtained from those for elastic isotropic materials. Based on the exact analytical solution of the singular stresses and electrical displacements near the crack front, the numerical method of the hypersingular integral equation is proposed by the finite-part integral method and boundary element method, which the square root models of the displacement and electric potential discontinuities in elements near the crack front are applied. Finally, the numerical solutions of the stress and electric field intensity factors of some examples are given.  相似文献   

17.
This paper presents an extension of a boundary element method to fatigue growth analysis of mixed-mode cracked plane elastic bodies. The method consists of the non-singular displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity element due to the author. In the boundary element implementation the left or the right crack-tip element is placed locally at the corresponding left or right crack tip on top of non-singular displacement discontinuity elements that cover the entire crack surface and the other boundaries. Crack growth is simulated with an incremental crack extension analysis based on the modified maximum strain energy density criterion. In numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not required because of an intrinsic feature of the boundary element method. Crack growth is simulated by adding new boundary elements on the incremental crack extension to the previous crack boundaries. At the same time, the element characters of some related elements are adjusted according to the manner in which the boundary element method is implemented. Some numerical results of fatigue growth in a plane elastic plate with a center-inclined crack under uniaxial cyclic loading are given.  相似文献   

18.
A new boundary element method is described for calculation of the steady incompressible laminar flows. The method is based on the well-known SIMPLE algorithm. The new boundary element method allows one to find the fields of the pressure and velocity corrections without inner iterations, thus reducing the computational time drastically. This makes it different from the method developed by Patankar and Spalding.32 However, the new method demands a much larger computer strorage. The boundary integral equations are discretized with the help of constant boundary elements and constant cells. The values of the integrals along the boundary elements and the cells for the two-dimensional domain are found analytically. To preserve the stability in the iteration process, under-relaxation for the convection terms is used. This paper gives the results of calculations of the flows between two plane parallel plates at Re = 20 and Re = 200, the flows in a square cavity with a moving upper lid at Re = 1 and Re = 100 and the flow in a plane channel with sudden symmetric expansion at Re =46·6.  相似文献   

19.
Axisymmetric problems in elasticity can be reduced to two dimensional ones, but they are a little more complicated than plane problems. Therefore, some special problems will be encountered in the boundary element programming of axisymmetric elasticity. In this paper, the methods to treat these problems and some remarks are given according to our experience in programming. Numerical examples are presented for the checking of these treatments.  相似文献   

20.
This paper presents a boundary element formulation and numerical implementation of the problem of small axisymmetric deformation of viscoplastic bodies. While the extension from planar to axisymmetric problems can be carried out fairly simply for the finite element method (FEM), this is far from true for the boundary element method (BEM). The primary reason for this fact is that the axisymmetric kernels in the integral equations of the BEM contain elliptic functions which cannot be integrated analytically even over boundary elements and internal cells of simple shape. Thus, special methods have to be developed for the efficient and accurate numerical integration of these singular and sensitive kernels over discrete elements. The accurate determination of stress rates by differentiation of the displacement rates presents another formidable challenge.A successful numerical implementation of the boundary element method with elementwise (called the Mixed approach) or pointwise (called the pure BEM or BEM approach) determination of stress rates has been carried out. A computer program has been developed for the solution of general axisymmetric viscoplasticity problems. Comparisons of numerical results from the BEM and FEM, for several illustrative problems, are presented and discussed in the paper. It is possible to get direct solutions for the simpler class of problems for cylinders of uniform cross-section, and these solutions are also compared with the BEM and FEM results for such cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号