首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
One of the main drawbacks affecting first‐generation electrochemical biosensors in the analysis of real matrices is the interference of electroactive species present in the sample under investigation. Several approaches have been attempted to overcome this problem in the past ten years but the best results were achieved by using mediated based electrochemical biosensors. Despite this, the kinetic of the redox mediators‐enzymatic proteins interaction has not been studied deeply enough. In this work we have developed a theoretical‐methodological approach for the characterization of the kinetic of interaction between redox enzymes and substrates and/or redox mediators. Particularly, the interaction of glucose oxidase (GOx) with several commercially available redox mediators has been studied by means of amperometry and cyclic voltammetry. The main kinetic parameters for different mediators were exploited and discussed with the aim of finding the best mediator for a glucose biosensor to be used on real samples.  相似文献   

2.
The properties of reagentless amperometric biosensors are mainly governed by the interaction of the used redox enzyme and the redox mediators used to facilitate the electron-transfer reaction. Both the used redox mediators and the redox enzymes differ concerning their hydrophilicity and their properties within the matrix of a carbon-paste electrode. Since there is no general procedure which is applicable for any enzyme in combination with any redox mediator, optimisation is necessary for each possible combination. Three approaches for the development of biosensors were investigated using carbon-paste electrodes enriched with redox mediator as a base in all sensor architectures. A class of redox mediators with the common formula Ru(LL)(2)(X)(2) (where LL are 1,10-phenantroline or 2,2'-bipyridine type ligands, and X is an acido ligand) was investigated. In the first approach, enzymes were integrated into the carbon paste; in the second, the enzymes were adsorbed on the surface of the mediator-containing carbon-paste electrode and held in place by a Nafion film; and in the third approach, enzymes were entrapped in polymer films, which were electrochemically deposited onto the electrode's surface. The properties of the obtained biosensors strongly depend on the sensor architecture and the specific features of the used enzyme. Thus, our investigation using three different sensor architectures can provide valuable information about the possible interaction between a specific enzyme and a redox mediators with specific properties.  相似文献   

3.
This paper focuses on the use of PQQ-dependent enzymes (PQQ enzymes) in amperometrical biosensors and gives emphasis on their innovative designs and applications. The study covers some aspects in the evolution of biosensors based on PQQ enzymes. Main attention is focused on the electrochemical properties of PQQ enzymes as very promising materials for the formation of electrochemical biosensors. Immobilization approaches and redox mediators recently used in PQQ enzymes based biosensors are reviewed. The acceptance of polypyrrole as a very promising immobilization matrix for some PQQ enzymes is discussed.  相似文献   

4.
Two-dimensional layered inorganic solids, such as cationic clays and layered double hydroxides (LDHs), also defined as anionic clays, have open structures which are favourable for interactions with enzymes and which intercalate redox mediators. This review aims to show the interest in clays and LDHs as suitable host matrices likely to immobilize enzymes onto electrode surfaces for biosensing applications. It is meant to provide an overview of the various types of electrochemical biosensors that have been developed with these 2D layered materials, along with significant advances over the last several years. The different biosensor configurations and their specific transduction procedures are discussed.   相似文献   

5.
Highly hydrated bioactive hydrogels containing immobilized oxidoreductase enzymes and immobilized redox mediators were simulated as the biorecognition layer of amperometric biosensors. The linear dynamic range of the amperometric response of mediated biosensors increases and moves to higher concentration brackets with an increase in the concentration of mediator. This informs the design of biosensors that target the same analyte but possesses several independently addressable electrodes modified with hydrogels that contain different concentrations of mediator. Increases in enzyme concentration increase the linear dynamic range but does not alter the sensitivity of amperometric biosensors. Both sensitivity and linear dynamic range of mediated amperometric enzyme biosensors may be “tuned” by varying the concentrations of the enzyme and the mediator. Simulations effectively guide the initial domains of study of complex systems such as implantable biosensors.  相似文献   

6.
In this tutorial review the basic approaches to establish electrochemical communication between redox-active proteins and electrodes are elucidated and examples for applications in electrochemical biosensors, biofuel cells and nanotechnology are presented. The early stage of protein electrochemistry is described giving a short overview over electron transfer (ET) between electrodes and proteins, followed by a brief introduction into experimental procedures for studying proteins at electrodes and possible applications arising thereof. The article starts with discussing the electrochemistry of cytochrome c, the first redox-active protein, for which direct reversible ET was obtained, under diffusion controlled conditions and after adsorption to electrodes. Next, examples for the electrochemical study of redox enzymes adsorbed on electrodes and modes of immobilization are discussed. Shortly the experimental approach for investigating redox-active proteins adsorbed on electrodes is outlined. Possible applications of redox enzymes in electrochemical biosensors and biofuel cells working by direct ET (DET) and mediated ET (MET) are presented. Furthermore, the reconstitution of redox active proteins at electrodes using molecular wire-like units in order to "wire" the proteins to the electrode surface and possible applications in nanotechnology are discussed.  相似文献   

7.
The flavocytochrome cellobiose dehydrogenase (CDH) is a versatile biorecognition element capable of detecting carbohydrates as well as quinones and catecholamines. In addition, it can be used as an anode biocatalyst for enzymatic biofuel cells to power miniaturised sensor–transmitter systems. Various electrode materials and designs have been tested in the past decade to utilize and enhance the direct electron transfer (DET) from the enzyme to the electrode. Additionally, mediated electron transfer (MET) approaches via soluble redox mediators and redox polymers have been pursued. Biosensors for cellobiose, lactose and glucose determination are based on CDH from different fungal producers, which show differences with respect to substrate specificity, pH optima, DET efficiency and surface binding affinity. Biosensors for the detection of quinones and catecholamines can use carbohydrates for analyte regeneration and signal amplification. This review discusses different approaches to enhance the sensitivity and selectivity of CDH-based biosensors, which focus on (1) more efficient DET on chemically modified or nanostructured electrodes, (2) the synthesis of custom-made redox polymers for higher MET currents and (3) the engineering of enzymes and reaction pathways. Combination of these strategies will enable the design of sensitive and selective CDH-based biosensors with reduced electrode size for the detection of analytes in continuous on-site and point-of-care applications.  相似文献   

8.
《Analytical letters》2012,45(6):963-996
ABSTRACT

An overview of probe-type and flow-through biosensors, together with biosensing systems, both batch and continuous biosensing systems, for monitoring typical species in wine processes is presented with the aim of showing the advantages and disadvantages involved in the use of each type of devices. Thus, biosensors and biosensing systems for the determination of ethanol (individual or together with that of other compounds), organic acids, glycerol, reducing sugars, acetaldehyde and sulfur dioxide/sulfite anions are reviewed and critically compared. The versatility and capability of continuous biosensing systems as compared with biosensors, particularly with probe-type biosensors working in a discontinuous, batch manner, is demonstrated.  相似文献   

9.
In the development of colorimetric biosensors, the use of electrochromic mediators has been accepted and widely used during decades. The main drawback of these types of enzymatic substrates is the difficult recovery of the initial redox state of the molecule, which can be done electrochemically or by antioxidants addition, complicating the initially simple structure of the biosensor. those strategies are rarely followed Actually, being the disposable biosensor configuration the most extended for this detection mechanisms. Alternatively, we propose the first reported use of a diacid dithienylethene 1,2-bis(5-carboxy-2-methylthien-3-yl)cyclopentene (DTE) photoelectrochromic compound as a substrate of the horseradish peroxidase (HRP). The photoisomerization between the open (DTEo) and closed (DTEc) forms of the molecule and the respective shift in the redox potential allowed the light-induced enzymatic detection of glucose in the glucose oxidase [(GOx)]–HRP cascade system. This fast and easy control over the enzymatic substrate availability by light pulses permits a gradually consumption and the light-regeneration of the biosensor for a number of cycles. We consider the presented results transcendent in the development of reusable and light-controlled photonic biosensing systems.  相似文献   

10.
The influence of Stokes shift in optosensing was discussed. Then, the current status of large Stokes shift-based optosensing was reviewed here.  相似文献   

11.
《中国化学快报》2019,30(10):1843-1848
Stokes shift is an important feature of fluorescence, which reveals the energy loss between the excitation and the emission. For most fluorescent materials(e.g., organic dyes and proteins), the large overlap between the absorption and emission spectra endow them a small Stokes shift that induced reabsorption by fluorophore itself. Although the self-absorption can be effectively reduced due to the emergence of fluorescent nanomaterials, fluorescence attenuation is still observed in aggregated or concentrated nanocrystals, causing reduced sensitivity of biosensors. Therefore, increasing the Stokes shift can effectively improve the performance of nano-agents based biosensing. In this critical review, through understanding the Stokes shift from the viewpoint of self-absorption, the influence of Stokes shift on fluorescence properties are discussed. Based on the principle of changing the Stokes shift of fluorescent nanomaterials, we described the methods for constructing various optically large Stokes shift-based nanomaterials, and the application of these nanocrystals in biosensing is especially concerned in this review.  相似文献   

12.
Triple a     
Many biological compounds exhibit irreversible redox behavior as a result of slow heterogeneous electron transfer at electrode surfaces. In order to study the electrochemical behavior of these biocomponents, redox mediators are used to facilitate the electron transfer process. In this review the characteristics of ideal mediators are discussed and structural information on previously reported mediator compounds is provided. The electrochemical literature has been extensively surveyed to provide an up-to-date compilation of mediators suitable for use in potentiometric and coulometric titrations and in various types of voltammetric studies of biological redox systems. The compilation provides information on the formal potentials of the mediators as well as their previous applications and references. This review is intended to provide a current survey of compounds having suitable redox mediation characteristics.  相似文献   

13.
The review provides articles discussing big challenges behind successful design of impedimetric biosensors and the way such challenges were/could be addressed for highly sensitive affinity detection of proteins. In particular, the effect of gold etching by chloride ions or by CN? ions (released from the redox probe [Fe(CN)6]3-/4-), the effect of ionic strength of the assay buffer; the effect of initial interfacial properties (capacitance) and the effect of the high analyte:bioreceptor ratio on electrochemical impedance spectroscopy–based biosensing are discussed. The review provides also short discussion related to other factors, which can significantly affect operational performance of electrochemical impedance spectroscopy–based biosensing including novel conductive interfaces, small bioreceptors, strategies for improved selectivity (nonbiofouling interfaces) and sensitivity (use of nanoparticles).  相似文献   

14.
氧化还原蛋白质电化学研究*   总被引:10,自引:0,他引:10  
刘慧宏  庞代文 《化学进展》2002,14(6):425-432
研究氧化还原蛋白质与电极之间的电子传递过程不仅为理解代谢过程提供有价值的信息,而且为制备生物传感器奠定基础。本文从蛋白质修饰电极、蛋白质在电极表面的定向固定及蛋白质人工改造三方面,评述了近年来氧化还原蛋白质电化学研究的进展,并提出了今后可能的研究方向。  相似文献   

15.
The objective of this study is to analyze the technical importance, performance, techniques, advantages, and disadvantages of the biosensors in general and of the electrochemical biosensors in particular. A product of reaction diffuses to the transducer in the first generation biosensors (based on Clark biosensors). The mediated biosensors or second generation biosensors use specific mediators between the reaction and the transducer to improve sensitivity. The second generation biosensors involve two steps: first, there is a redox reaction between enzyme and substrate that is reoxidized by the mediator, and eventually the mediator is oxidized by the electrode. No normal product or mediator diffusion is directly involved in the third generation biosensors, direct biosensors. Based on the type of transducer, current biosensors are divided into optical, mass, thermal, and electrochemical sensors. They are used in medical diagnostics, food quality controls, environmental monitoring, and other applications. These biosensors are also grouped under two broad categories of sensors: direct and indirect detection systems. Moreover, these systems could be further grouped into continuous or batch operation. Therefore, amperometric biosensors and their current applications are focused on more in detail since they are the most commonly used biosensors in monitoring and diagnosing tests in clinical analysis. Problems related to the commercialization of medical, environmental, and industrial biosensors as well as their performance characteristics, their competitiveness in comparison to the conventional analytical tools, and their costs determine the future development of these biosensors.  相似文献   

16.
The preferential electrocatalytic detection of hydrogen peroxide and the selective biosensing of glucose at carbon-paste enzyme electrodes dispersed with bimetallic (Ru–Pt) alloy particles are described. Unlike the marked acceleration of the redox reaction of the peroxide product (versus single metal catalysts), the signals of common interfering compounds shift to higher potentials. Such use of carbon-supported alloy particles thus results in a greatly enhanced sensitivity compared to the dispersion of pure metals, without compromising the remarkable selectivity inherent to metallized carbon biosensors.  相似文献   

17.
A real-time ability to interpret the interaction between targeted biomolecules and the surface of semiconductors (metal transducers) into readable electrical signals, without biomolecular modification involving fluorescence dyes, redox enzymes, and radioactive labels, created by label-free biosensors has been extensively researched. Field-effect transistor (FET)- and capacitor-based biosensors are among the diverse electrical charge biosensing architectures that have drawn much attention for having charge transduction; thus, enabling the early and rapid diagnosis of the appropriate cardiac biomarkers at lower concentrations. These semiconducting material-based transducers are very suitable to be integrated with portable electronic devices for future online collection, transmission, reception, analysis, and reporting. This overview elucidates and clarifies two major electrical label-free systems (FET- and capacitor-based biosensors) with cardiac troponin (cTn) biomarker-mediated charge transduction for acute myocardial infarction (AMI) diagnosis. Advances in these systems are highlighted by their progression in bridging the laboratory and industry; the foremost technologies have made the transition from benchtop to bedside and beyond.  相似文献   

18.
Electron-transfer mechanisms in amperometric biosensors   总被引:1,自引:0,他引:1  
The function of amperometric biosensors is related to electron-transfer processes between the active site of an (immobilized) enzyme and an electrode surface which is poised to an appropriate working potential. Problems and specific features of architectures for amperometric biosensors using different electron-transfer pathways such as mediated electron transfer, electron-hopping in redox polymers, electron transfer using mediator-modified enzymes and carbon-paste electrodes, direct electron transfer by means of self-assembled monolayers or via conducting-polymer chains are discussed.  相似文献   

19.
血红蛋白为人体红细胞中的一种主要蛋白质,是血液中运输氧气的主要物质。由于其类酶的性质、确定的结构以及分布的广泛性,长期以来一直是氧化还原蛋白质直接电化学以及生物传感研究的理想模型。近年来,受益于材料科学与信息技术的快速发展,血红蛋白直接电化学的界面设计以及生物传感已成为当前的研究热点。为此,本文对近年来这方面的研究进展进行综述。通过介绍血红蛋白直接电化学界面设计的基本方法以及生物传感的原理和研究现状,以探索今后的发展趋势。  相似文献   

20.
Glutathione transferases are enzymes involved in the detoxification against xenobiotics and noxious compounds. These enzymes catalyse a variety of reactions on many physiological and xenobiotic compounds using glutathione as a co-substrate. Moreover, many compounds are inhibitors of such enzymes. A wide array of biosensors based on glutathione transferases have been developed for analysing a variety of noxious compounds, as well as several biosensors devoted to the detection and quantification of glutathione and of glutathione transferases themselves. Here, we review the state of the art in this active field of research, highlighting the possible applications of such devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号