首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We prove some Liouville type results for stable solutions to the biharmonic problem $\Delta ^2 u= u^q, \,u>0$ in $\mathbb{R }^n$ where $1 < q < \infty $ . For example, for $n \ge 5$ , we show that there are no stable classical solution in $\mathbb{R }^n$ when $\frac{n+4}{n-4} < q \le \left(\frac{n-8}{n}\right)_+^{-1}$ .  相似文献   

2.
3.
We investigate the zeros of a family of hypergeometric polynomials $M_n(x;\beta ,c)=(\beta )_n\,{}_2F_1(-n,-x;\beta ;1-\frac{1}{c})$ , $n\in \mathbb N ,$ known as Meixner polynomials, that are orthogonal on $(0,\infty )$ with respect to a discrete measure for $\beta >0$ and $0<c<1.$ When $\beta =-N$ , $N\in \mathbb N $ and $c=\frac{p}{p-1}$ , the polynomials $K_n(x;p,N)=(-N)_n\,{}_2F_1(-n,-x;-N;\frac{1}{p})$ , $n=0,1,\ldots , N$ , $0<p<1$ are referred to as Krawtchouk polynomials. We prove results for the zero location of the orthogonal polynomials $M_n(x;\beta ,c)$ , $c<0$ and $n<1-\beta $ , the quasi-orthogonal polynomials $M_n(x;\beta ,c)$ , $-k<\beta <-k+1$ , $k=1,\ldots ,n-1$ and $0<c<1$ or $c>1,$ as well as the polynomials $K_{n}(x;p,N)$ with non-Hermitian orthogonality for $0<p<1$ and $n=N+1,N+2,\ldots $ . We also show that the polynomials $M_n(x;\beta ,c)$ , $\beta \in \mathbb R $ are real-rooted when $c\rightarrow 0$ .  相似文献   

4.
We establish lower bounds on the dimensions in which arithmetic groups with torsion can act on acyclic manifolds and homology spheres. The bounds rely on the existence of elementary $p$ -groups in the groups concerned. In some cases, including ${\mathrm{Sp}}(2n,\mathbb Z )$ , the bounds we obtain are sharp: if $X$ is a generalized $\mathbb Z /3$ -homology sphere of dimension less than $2n-1$ or a $\mathbb Z /3$ -acyclic $\mathbb Z /3$ -homology manifold of dimension less than $2n$ , and if $n\ge 3$ , then any action of ${\mathrm{Sp}}(2n,\mathbb Z )$ by homeomorphisms on $X$ is trivial; if $n=2$ , then every action of ${\mathrm{Sp}}(2n,\mathbb Z )$ on $X$ factors through the abelianization of ${\mathrm{Sp}}(4,\mathbb Z )$ , which is $\mathbb Z /2$ .  相似文献   

5.
Applying the boundedness on weighted Lebesgue spaces of the maximal singular integral operator S * related to the Carleson?CHunt theorem on almost everywhere convergence, we study the boundedness and compactness of pseudodifferential operators a(x, D) with non-regular symbols in ${L^\infty(\mathbb{R}, V(\mathbb{R})), PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ and ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ on the weighted Lebesgue spaces ${L^p(\mathbb{R},w)}$ , with 1?< p <? ?? and ${w\in A_p(\mathbb{R})}$ . The Banach algebras ${L^\infty(\mathbb{R}, V(\mathbb{R}))}$ and ${PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ consist, respectively, of all bounded measurable or piecewise continuous ${V(\mathbb{R})}$ -valued functions on ${\mathbb{R}}$ where ${V(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded total variation, and the Banach algebra ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ consists of all Lipschitz ${V_d(\mathbb{R})}$ -valued functions of exponent ${\gamma \in (0,1]}$ on ${\mathbb{R}}$ where ${V_d(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded variation on dyadic shells. Finally, for the Banach algebra ${\mathfrak{A}_{p,w}}$ generated by all pseudodifferential operators a(x, D) with symbols ${a(x, \lambda) \in PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ on the space ${L^p(\mathbb{R}, w)}$ , we construct a non-commutative Fredholm symbol calculus and give a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ .  相似文献   

6.
In this paper, we consider the complex Ginzburg–Landau equation ${u_t = e^{i\theta} [\Delta u + |u|^\alpha u] + \gamma u}$ on ${\mathbb{R}^N}$ , where ${\alpha > 0,\,\gamma \in \mathbb{R}}$ and ${-\pi /2 < \theta < \pi /2}$ . By convexity arguments, we prove that, under certain conditions on ${\alpha,\theta,\gamma}$ , a class of solutions with negative initial energy blows up in finite time.  相似文献   

7.
We consider the problem ${\varepsilon^{2}\Delta u - u^q + u^p = 0\,{\rm in}\,\Omega,\,u > 0\,{\rm in}\,\Omega,\,\frac{\partial u}{\partial \nu} = 0\,{\rm on}\,\partial\Omega }$ where Ω is a smooth bounded domain in ${\mathbb{R}^N}$ , ${1 < q < p < {N+2\over N-2}}$ if N ≥ 2 and ${\varepsilon}$ is a small positive parameter. We determine the location and shape of the least energy solution when ${\varepsilon \rightarrow 0.}$   相似文献   

8.
We study the following nonlinear elliptic system of Lane–Emden type $$\left\{\begin{array}{ll} -\Delta u = {\rm sgn}(v) |v| ^{p-1} \qquad \qquad \qquad \; {\rm in} \; \Omega , \\ -\Delta v = - \lambda {\rm sgn} (u)|u| \frac{1}{p-1} + f(x, u)\; \; {\rm in}\; \Omega , \\ u = v = 0 \qquad \qquad \qquad \quad \quad \;\;\;\;\; {\rm on}\; \partial \Omega , \end{array}\right.$$ where ${\lambda \in \mathbb{R}}$ . If ${\lambda \geq 0}$ and ${\Omega}$ is an unbounded cylinder, i.e., ${\Omega = \tilde \Omega \times \mathbb{R}^{N-m} \subset \mathbb{R}^{N}}$ , ${N - m \geq 2, m \geq 1}$ , existence and multiplicity results are proved by means of the Principle of Symmetric Criticality and some compact imbeddings in partially spherically symmetric spaces. We are able to state existence and multiplicity results also if ${\lambda \in \mathbb{R}}$ and ${\Omega}$ is a bounded domain in ${\mathbb{R}^{N}, N \geq 3}$ . In particular, a good finite dimensional decomposition of the Banach space in which we work is given.  相似文献   

9.
We examine the fourth order problem $\Delta ^2 u = \lambda f(u) $ in $ \Omega $ with $ \Delta u = u =0 $ on $ {\partial \Omega }$ , where $ \lambda > 0$ is a parameter, $ \Omega $ is a bounded domain in $\mathbb{R }^N$ and where $f$ is one of the following nonlinearities: $ f(u)=e^u$ , $ f(u)=(1+u)^p $ or $ f(u)= \frac{1}{(1-u)^p}$ where $ p>1$ . We show the extremal solution is smooth, provided $$\begin{aligned} N < 2 + 4 \sqrt{2} + 4 \sqrt{ 2 - \sqrt{2}} \approx 10.718 \text{ when} f(u)=e^u, \end{aligned}$$ and $$\begin{aligned} N < \frac{4p}{p-1} + \frac{4(p+1)}{p-1} \left( \sqrt{ \frac{2p}{p+1}} + \sqrt{ \frac{2p}{p+1} - \sqrt{ \frac{2p}{p+1}}} - \frac{1}{2} \right) \end{aligned}$$ when $ f(u)=(u+1)^p$ . New results are also obtained in the case where $ f(u)=(1-u)^{-p}$ . These are substantial improvements to various results on critical dimensions obtained recently by various authors. To do that, we derive a new stability inequality satisfied by minimal solutions of the above equation, which is more amenable to estimates as it allows a method of proof reminiscent of the second order case.  相似文献   

10.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

11.
In this paper we prove several related results concerning smooth $\mathbb{Z }_p$ or $\mathbb{S }^1$ actions on $4$ -manifolds. We show that there exists an infinite sequence of smooth $4$ -manifolds $X_n$ , $n\ge 2$ , which have the same integral homology and intersection form and the same Seiberg-Witten invariant, such that each $X_n$ supports no smooth $\mathbb{S }^1$ -actions but admits a smooth $\mathbb{Z }_n$ -action. In order to construct such manifolds, we devise a method for annihilating smooth $\mathbb{S }^1$ -actions on $4$ -manifolds using Fintushel-Stern knot surgery, and apply it to the Kodaira-Thurston manifold in an equivariant setting. Finally, the method for annihilating smooth $\mathbb{S }^1$ -actions relies on a new obstruction we derived in this paper for existence of smooth $\mathbb{S }^1$ -actions on a $4$ -manifold: the fundamental group of a smooth $\mathbb{S }^1$ -four-manifold with nonzero Seiberg-Witten invariant must have infinite center. We also include a discussion on various analogous or related results in the literature, including locally linear actions or smooth actions in dimensions other than four.  相似文献   

12.
Firstly we prove the non-existence of positive radially symmetric solution of the nonlinear elliptic equation $\frac{n-1}{m}\Delta v^m+\alpha v+\beta x\cdot \nabla u=0$ in $\mathbb{R }^{n}$ when $n\ge 3$ , $0<m\le \frac{n-2}{n}$ , $\alpha <0$ and $\beta \le 0$ and prove various properties of the solution of the above elliptic equation for other parameter range of $\alpha $ and $\beta $ . Then these results are applied to prove some results on Yamabe solitons including the exact behaviour of the metric of the Yamabe soliton, its scalar curvature and sectional curvature, at infinity. A new proof of a result of Daskalopoulos and Sesum (The classification of locally conformally flat Yamabe solitons, http://arxiv.org/abs/1104.2242) on the positivity of the sectional curvature of Yamabe solitons is also presented.  相似文献   

13.
For a sequence $\underline{u}=(u_n)_{n\in \mathbb{N }}$ of integers, let $t_{\underline{u}}(\mathbb{T })$ be the group of all topologically $\underline{u}$ -torsion elements of the circle group $\mathbb{T }:=\mathbb{R }/\mathbb{Z }$ . We show that for any $s\in ]0,1[$ and $m\in \{0,+\infty \}$ there exists $\underline{u}$ such that $t_{\underline{u}}(\mathbb{T })$ has Hausdorff dimension $s$ and $s$ -dimensional Hausdorff measure equal to $m$ (no other values for $m$ are possible). More generally, for dimension functions $f,g$ with $f(t)\prec g(t), f(t)\prec \!\!\!\prec t$ and $g(t)\prec \!\!\!\prec t$ we find $\underline{u}$ such that $t_{\underline{u}}(\mathbb{T })$ has at the same time infinite $f$ -measure and null $g$ -measure.  相似文献   

14.
Let ${\Omega\subset\mathbb{R}^n}$ be open and bounded. For 1 ≤ p < ∞ and 0 ≤ λ < n, we give a characterization of Young measures generated by sequences of functions ${\{{\bf f}_j\}_{j=1}^\infty}$ uniformly bounded in the Morrey space ${L^{p,\lambda}(\Omega;\mathbb{R}^N)}$ with ${\{\left|{{\bf f}_j}\right|^p\}_{j=1}^\infty}$ equiintegrable. We then treat the case that each f j = ? u j for some ${{\bf u}_j\in W^{1,p}(\Omega;\mathbb{R}^N)}$ . As an application of our results, we consider the functional $${\bf u} \mapsto \int\limits_{\Omega}f({\bf x}, {\bf u}({\bf x}), {\bf {\nabla}}{\bf u}({\bf x})){\rm d}{\bf x},$$ and provide conditions that guarantee the existence of a minimizing sequence with gradients uniformly bounded in ${L^{p,\lambda}(\Omega;\mathbb{R}^{N\times n})}$ .  相似文献   

15.
For a proper open set $\Omega $ immersed in a metric space with the weak homogeneity property, and given a measure $\mu $ doubling on a certain family of balls lying “well inside” of $\Omega $ , we introduce a local maximal function and characterize the weights $w$ for which it is bounded on $L^p(\Omega ,w d\mu )$ when $1<p<\infty $ and of weak type $(1,1)$ . We generalize previous known results and we also present an application to interior Sobolev’s type estimates for appropriate solutions of the differential equation $\Delta ^m u=f$ , satisfied in an open proper subset $\Omega $ of $\mathbb R ^n$ . Here, the data $f$ belongs to some weighted $L^p$ space that could allow functions to increase polynomially when approaching the boundary of $\Omega $ .  相似文献   

16.
We consider the distribution of the orbits of the number 1 under the $\beta $ -transformations $T_\beta $ as $\beta $ varies. Mainly, the size of the set of $\beta >1$ for which a given point can be well approximated by the orbit of 1 is measured by its Hausdorff dimension. The dimension of the following set $E\big (\{\ell _n\}_{n\ge 1}, x_0\big )=\Big \{\,\beta >1: |T^n_{\beta }1-x_0|<\beta ^{-\ell _n}, \hbox { for infinitely many}, \, n\in \mathbb{N }\,\Big \}$ is determined, where $x_0$ is a given point in $[0,1]$ and $\{\ell _n\}_{n\ge 1}$ is a sequence of integers tending to infinity as $n\rightarrow \infty $ . For the proof of this result, the notion of the recurrence time of a word in symbolic space is introduced to characterise the lengths and the distribution of cylinders (the set of $\beta $ with a common prefix in the expansion of 1) in the parameter space $\{\,\beta \in \mathbb{R }: \beta >1\,\}$ .  相似文献   

17.
We study the solvability of the quasilinear problem $$\begin{aligned} -\Delta _p u =\frac{u^q }{|x|^p}+g(\lambda , x, u) \quad u>0 \quad \text{ in}\;\Omega , \end{aligned}$$ with $u=0$ on $\partial \Omega $ , where $-\Delta _p(\cdot )$ is the $p$ -Laplacian operator, $q>0, 1<p<N$ and $\Omega $ a smooth bounded domain in $\mathbb R ^N$ . We consider the following cases:
  1. $g(\lambda ,x,u)\equiv 0$ ;
  2. $g(\lambda ,x,u)=\lambda f(x)u^r$ , with $\lambda >0$ and $f(x) \gneq 0$ belonging to $L^{\infty }(\Omega )$ and $0 \le r<p-1$ .
In the case $(i)$ , the existence of solutions depends on the location of the origin in the domain, on the geometry of the domain and on the exponent $q$ . On the other hand, in the case $(ii)$ , the existence of solutions only depends on the position of the origin and on the coefficient $\lambda $ , but does not depend either on the exponent $q$ or on the geometry of $\Omega $ .  相似文献   

18.
Consider a finite dimensional complex Hilbert space ${\mathcal{H}}$ , with ${dim(\mathcal{H}) \geq 3}$ , define ${\mathbb{S}(\mathcal{H}):= \{x\in \mathcal{H} \:|\: \|x\|=1\}}$ , and let ${\nu_\mathcal{H}}$ be the unique regular Borel positive measure invariant under the action of the unitary operators in ${\mathcal{H}}$ , with ${\nu_\mathcal{H}(\mathbb{S}(\mathcal{H}))=1}$ . We prove that if a complex frame function ${f : \mathbb{S}(\mathcal{H})\to \mathbb{C}}$ satisfies ${f \in \mathbb{L}^2(\mathbb{S}(\mathcal{H}), \nu_\mathcal{H})}$ , then it verifies Gleason’s statement: there is a unique linear operator ${A: \mathcal{H} \to \mathcal{H}}$ such that ${f(u) = \langle u| A u\rangle}$ for every ${u \in \mathbb{S}(\mathcal{H}).\,A}$ is Hermitean when f is real. No boundedness requirement is thus assumed on f a priori.  相似文献   

19.
In this paper, we show that the extended modular group ${\hat{\Gamma}}$ acts on ${\hat{\mathbb{Q}}}$ transitively and imprimitively. Then the number of orbits of ${\hat{\Gamma} _{0}(N)}$ on ${\hat{\mathbb{Q}}}$ is calculated and compared with the number of orbits of ${\Gamma _{0}(N)}$ on ${\hat{\mathbb{Q}}}$ . Especially, we obtain the graphs ${\hat{G}_{u, N}}$ of ${\hat{\Gamma}_{0}(N)}$ on ${\hat{\mathbb{Q}}}$ , for each ${N\in\mathbb{N}}$ and each unit ${u \in U_{N} }$ , then we determine the suborbital graph ${\hat{F}_{u,N}}$ . We also give the edge conditions in ${\hat{G}_{u, N}}$ and the necessary and sufficient conditions for a circuit to be triangle in ${\hat{F}_{u, N}.}$   相似文献   

20.
Let $\Phi $ be a continuous $n\times n$ matrix-valued function on the unit circle $\mathbb T $ such that the $(k-1)$ st singular value of the Hankel operator with symbol $\Phi $ is greater than the $k$ th singular value. In this case, it is well-known that $\Phi $ has a unique superoptimal meromorphic approximant $Q$ in $H^{\infty }_{(k)}$ ; that is, $Q$ has at most $k$ poles in the unit disc $\mathbb D $ (in the sense that the McMillan degree of $Q$ in $\mathbb D $ is at most $k$ ) and $Q$ minimizes the essential suprema of singular values $s_{j}\left((\Phi -Q)(\zeta )\right)\!, j\ge 0$ , with respect to the lexicographic ordering. For each $j\ge 0$ , the essential supremum of $s_{j}\left((\Phi -Q)(\zeta )\right)$ is called the $j$ th superoptimal singular value of degree $k$ of $\Phi $ . We prove that if $\Phi $ has $n$ non-zero superoptimal singular values of degree $k$ , then the Toeplitz operator $T_{\Phi -Q}$ with symbol $\Phi -Q$ is Fredholm and has index $$ \mathrm{ind}T_{\Phi -Q}=\dim \ker T_{\Phi -Q}=2k+\dim \mathcal E , $$ where $\mathcal E =\{ \xi \in \ker H_{Q}: \Vert H_{\Phi }\xi \Vert _{2}=\Vert (\Phi -Q)\xi \Vert _{2}\}$ and $H_{\Phi }$ denotes the Hankel operator with symbol $\Phi $ . This result can in fact be extended from continuous matrix-valued functions to the wider class of $k$ -admissible matrix-valued functions, i.e. essentially bounded $n\times n$ matrix-valued functions $\Phi $ on $\mathbb T $ for which the essential norm of the Hankel operator $H_{\Phi }$ is strictly less than the smallest non-zero superoptimal singular value of degree $k$ of $\Phi $ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号