首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sampling of coarse waste materials is considered to be a particularly challenging task and is at the same time the most crucial step in the overall data acquisition process. Despite this fact, research work on new sampling methods or new scientific approaches to sampling has been rather limited over the last decades. This paper focuses on a completely new sampling procedure for coarse two-dimensional materials similar to municipal solid waste or packaging plastics. The developed method is especially suitable for materials with particle sizes >100 mm and is based on the ‘press-and-drill method’ introduced by researchers from Fachhochschule Nordhausen. The basic idea is to sample the material in its compressed form (e.g. as bales) with a drilling tool in order to gain increments. The study presented in this paper shows the results of two extensive test series applying this new sampling technique to a middle-calorific fraction produced from packaging material (mainly plastics, textiles and paper). In parallel, the state-of-the-art approach was also applied on the same materials to gain valuable reference data. Results from both approaches are used for the extensive validation of the new sampling method. The verification of accuracy was realised by doping the material with defined pieces of foil containing molybdenum sulphide (MoS2) which acted as a tracer in the bale. The results obtained by the new direct bale sampling showed not only good accordance with the actual tracer content in each bale but also with results derived from the state-of-the-art approach. In this study, homogeneously distributed parameters (e.g. loss of ignition) were included just as inhomogeneously distributed elements (i.e. Cu). It is shown that sufficient representativeness for coarse materials (d95 > 300 mm) is obtained despite relatively small sample amounts and without previous comminution of the material.  相似文献   

2.
Sampling is considered a crucial step in the analysis of organic compounds in the environment. This review describes field sampling techniques and provides detailed step-by-step procedures for collection and preservation of all major environmental matrices (water, sediment and soil) integrated as part of the river-basin water cycle. Attention is given to the prerequisites for obtaining reliable samples, and the practical issues of sample collection (planning, field sampling, sampling strategies and equipment and data quality assessment) are considered. Considering the heterogeneity of environmental matrices, special considerations for each matrix are given to solve typical problems and to find the most appropriate solutions to ensure the quality of the sample. The procedures described in the next sections are commonly used protocols that reflect true field conditions and current state-of-the-art techniques used in the sampling of organic compounds. The aim is to signify the importance of sampling to the overall analytical procedure. Finally, quality control issues to be considered in environmental sampling are given.  相似文献   

3.
Reliability of measurements of pesticide residues in food   总被引:1,自引:0,他引:1  
This paper accounts for the major sources of errors associated with pesticide residue analysis and illustrates their magnitude based on the currently available information. The sampling, sample processing and analysis may significantly influence the uncertainty and accuracy of analytical data. Their combined effects should be considered in deciding on the reliability of the results. In the case of plant material, the average random sampling (coefficient of variation, CV=28–40%) and sample processing (CV up to 100%) errors are significant components of the combined uncertainty of the results. The average relative uncertainty of the analytical phase alone is about 17–25% in the usual 0.01–10 mg/kg concentration range. The major contributor to this error can be the gas-liquid chromatography (GLC) or high-performance liquid chromatography (HPLC) analysis especially close to the lowest calibrated level. The expectable minimum of the combined relative standard uncertainty of the pesticide residue analytical results is in the range of 33–49% depending on the sample size.The gross and systematic errors may be much larger than the random error. Special attention is required to obtain representative random samples and to eliminate the loss of residues during sample preparation and processing.  相似文献   

4.
The quality of environmental studies depends on the utilization of adequate sampling protocol and analytical method for obtaining reliable results and minimizing analytical uncertainties. In order to demonstrate the applicability of INAA for determining chemical element composition of invertebrates, this work evaluated sample representativeness in terms of subsampling and sample size. Br, Co, Fe, K, Na, Sc and Zn could be determined in very small samples despite increasing of analytical uncertainties. Special attention should be directed to invertebrate species with small structures because of the high chemical variation observed among different sample sizes tested.  相似文献   

5.
6.
 Uncertainty of sampling is the contribution from sampling errors to the combined uncertainty associated with an analytical measurement when the measurand is the concentration of the analyte in the 'target', the total bulk of material that the sample is meant to represent. Of the errors considered to contribute to uncertainty, random errors of sampling, characterised by precision, are much more accessible to investigation than those due to bias. Where an approximation to random sampling can be achieved, realistic precisions can normally be estimated. In some instances reproducibility precision is significantly greater than repeatability precision, and the contribution of between-sampler variations to sampling uncertainty must be acknowledged. However, the collaborative trial of a sampling method is an expensive and difficult exercise to execute. A system of internal quality control for routine sampling can be introduced. Fitness for purpose has been defined in terms of the required combined uncertainty of sampling and analysis. Received: 4 November 1997 · Accepted: 26 November 1997  相似文献   

7.
固体分层取样方案的最优化设计   总被引:1,自引:0,他引:1  
本文首次从理论上探讨了取得量对分层取样误差的影响,提出了总取样量一定时各层的最佳取样量和最小取样方差的计算公式,从而为分层取样的最佳取样方案设计提供了理论依据。  相似文献   

8.
Sample preparation frequently is considered the most critical stage of the analytical workflow. It affects the analytical throughput and costs; moreover, it is the primary source of error and possible sample contamination. To increase efficiency, productivity, and reliability, while minimizing costs and environmental impacts, miniaturization and automation of sample preparation are necessary. Nowadays, several types of liquid-phase and solid-phase microextractions are available, as well as different automatization strategies. Thus, this review summarizes recent developments in automated microextractions coupled with liquid chromatography, from 2016 to 2022. Therefore, outstanding technologies and their main outcomes, as well as miniaturization and automation of sample preparation, are critically analyzed. Focus is given to main microextraction automation strategies, such as flow techniques, robotic systems, and column-switching approaches, reviewing their applications to the determination of small organic molecules in biological, environmental, and food/beverage samples.  相似文献   

9.
提出了计算机模拟地质化验室取样过程,考察取样误差与取样量、样品粒度之间关系,并估算取样常数。实验所得的误差与取样量之间的关系与Ingamells的取样方程一致,取样常数及取样常数和样品粒度关系式也与Ingamells推导的相符。由于计算机模拟是一颗颗取样,不用预设分布模式,不存在分析方法误差和分样操作误差的叠加,误差完全是因样品本身不均匀产生的。而且计算机模拟运算速度快,参数变换方便,使模拟更接近样品实际,能满足地质化验室的应用。  相似文献   

10.
Although polar organic contaminants (POCs) such as pharmaceuticals are considered as some of today's most emerging contaminants few of them are regulated or included in on-going monitoring programs. However, the growing concern among the public and researchers together with the new legislature within the European Union, the registration, evaluation and authorisation of chemicals (REACH) system will increase the future need of simple, low cost strategies for monitoring and risk assessment of POCs in aquatic environments. In this article, we overview the advantages and shortcomings of traditional and novel sampling techniques available for monitoring the emerging POCs in water. The benefits and drawbacks of using active and biological sampling were discussed and the principles of organic passive samplers (PS) presented. A detailed overview of type of polar organic PS available, and their classes of target compounds and field of applications were given, and the considerations involved in using them such as environmental effects and quality control were discussed. The usefulness of biological sampling of POCs in water was found to be limited. Polar organic PS was considered to be the only available, but nevertheless, an efficient alternative to active water sampling due to its simplicity, low cost, no need of power supply or maintenance, and the ability of collecting time-integrative samples with one sample collection. However, the polar organic PS need to be further developed before they can be used as standard in water quality monitoring programs.  相似文献   

11.
Gas chromatography-mass spectrometry (GC-MS) is already an important laboratory method, but new sampling techniques and column heating approaches will expand and improve its usefulness for detection and identification of unknown chemicals in field settings. In order to demonstrate commercially-available technical advances for both sampling and column heating, we used solid phase microextraction (SPME) sampling of both water and air systems, followed by immediate analysis with a resistively heated analytical column and mass spectrometric detection. High-concern compounds ranging from 140 to 466 amu were analyzed to show the applicability of these techniques to emergency situations impacting public health. A field portable (about 35 kg) GC-MS system was used for analysis of water samples with a resistively heated analytical column externally mounted as a retrofit using the air bath oven of the original instrument design to heat transfer lines. The system used to analyze air samples included a laboratory mass spectrometer with a dedicated resistive column heating arrangement (no legacy air bath column oven). The combined sampling and analysis time was less than 10 min for both air and water sample types. By combining dedicated resistive column heating with smaller mass spectrometry systems designed specificallyfor use in the field, substantially smaller high performance field-portable instrumentation will be possible.  相似文献   

12.
Appropriate sampling, that includes the estimation of measurement uncertainty, is proposed in preference to representative sampling without estimation of overall measurement quality. To fulfil this purpose the uncertainty estimate must include contribution from all sources, including the primary sampling, sample preparation and chemical analysis. It must also include contributions from systematic errors, such as sampling bias, rather than from random errors alone. Case studies are used to illustrate the feasibility of this approach and to show its advantages for improved reliability of interpretation of the measurements. Measurements with a high level of uncertainty (e.g. 50%) can be shown to be fit for some specified purposes using this approach. Once reliable estimates of the uncertainty are available, then a probabilistic interpretation of results can be made. This allows financial aspects to be considered in deciding upon what constitutes an acceptable level of uncertainty. In many practical situations ”representative” sampling is never fully achieved. This approach recognises this and instead, provides reliable estimates of the uncertainty around the concentration values that imperfect appropriate sampling causes. Received: 28 December 2001 Accepted: 25 April 2002  相似文献   

13.
基于多项分布理论,建立了组合取样方差与取样总体中各子区的大小及其组分含量之间的关系和计算公式,探讨了组合取样常数的物理意义.以颗粒物质为例,探讨了组合取样的逻辑质量单元的概念及其意义,为确定组合取样中的份样质量提供了理论依据.本文对于完善组合取样误差理论,保证组合取样的质量均具有重要意义.  相似文献   

14.
一种流动注射分析用的多功能进样阀研制成功。该阀具有结构简单合理,加工制作容易,使用寿命长,不易泄漏等优点.可用于单通道进样,多通道交替进样,合并带、阀停流、连续测定以及在线离子交换分离富集等技术,是一种理想的进样和流路转换装置。  相似文献   

15.
Measuring water quality for various purposes (e.g., drinking, environmental or wastewater) generally relies on analysis of a wide variety of physico-chemical parameters and chemical substances, including toxic and carcinogenic substances at various levels of concentrations, in a wide variety of (raw or filtered) matrices. Measurement strategies (covering sampling, sample pre-treatment, storage, and laboratory analyses) have evolved over the past 25 years with the development of new instruments and new techniques, as well as the harmonization of procedures throughout Europe, particularly through increasing awareness of quality assurance (QA) of environmental analysis. In this context, TrAC has played a significant role in disseminating information on trends, with a series of special issues on emerging trends in analytical developments and related features (e.g., QA, on-site methods, automated analytical instrumentation, and emerging pollutants, including endocrine disruptors). This article gives examples of analytical developments in the water sector as seen from TrAC perspectives.  相似文献   

16.
The current state-of-the-art of passive sampling and/or extraction methods for long-term monitoring of pollutants in different environmental compartments is discussed in this review. Passive dosimeters that have been successfully used to monitor organic and inorganic contaminants in air, water, sediments, and soil are presented. The application of new approaches to the determination of pollutants at the sampling stage is discussed. The main milestones in the development of passive techniques for sampling and/or extraction of analytes, and in biomonitors used in environmental analysis, are summarized in this review. Passive samplers and biomonitors are compared.  相似文献   

17.
Designs of experiments were proposed for estimating random sampling errors in ecological monitoring and errors due to sample delivery to the laboratory. The designs were tested in controlling pollutants in gas and dust atmospheric emissions, atmospheric aerosols, insoluble snow cover residues, soils, and plants. It was found that the contribution of random sampling errors was often dominant as compared to the errors introduced in the course of analysis of laboratory samples.  相似文献   

18.
In‐syringe solid‐phase extraction is a promising sample pretreatment method for the on‐site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in‐syringe solid‐phase extraction device using metal–organic frameworks as the adsorbent was fabricated for the on‐site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self‐made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal–organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self‐made device for on‐site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal–organic frameworks in sample preparation and demonstrate the great potential of in‐syringe solid‐phase extraction for the on‐site sampling of trace contaminants in environmental waters.  相似文献   

19.
化学分析取样几乎总是一个多步骤过程,所有的步骤都会导致分析结果的总体不确定性。样品采取之后,不论后续采样过程如何精细,前期采样阶段的误差都无法在后续采样过程中更正。第一次取样是最重要的,通常其方差远远超过实验室测量的方差。但这不意味着在最终实验室分析试样制备阶段可以忽略采样理论的原理。现代分析仪器旨在处理小样本(从毫克到几克)。在这种情况下,如果样品是包含少量分析物的混合颗粒,则物料的不均匀性可能会很大以至于破坏整个分析过程。不均匀性计算和样品制备过程中基本采样误差方差的估计对于开发适用的分析程序至关重要。在样本制备的最后步骤中,新的增量本是父增量本的重要组成部分,在估算样本方差时必须考虑到这种影响。TOS提供了用于处理这些情况的工具。通过两个案例阐明了不均匀性计算的应用。在第一个例子中,评估了鸡饲料中低含量添加剂的成分不均匀性,在第二个例子中,对样品制备进行了优化,以校正用于分析硅灰石精矿中矿物杂质含量的红外仪器。在处理颗粒混合物和评估混样效率时,不均匀性评估也很重要。  相似文献   

20.
重金属是农产品、农田土壤、肥料、饲料等农业样品中的重要污染物,传统的实验室分析方法需繁琐的前处理,耗时费力,无法满足重金属的快速检测需求。固体进样元素分析技术具有简化样品前处理、便捷、绿色、高效等优势,在农业领域中元素的快速检测分析中具有良好的应用前景。通过对固体进样元素分析技术,包括样品导入技术和电热蒸发、电感加热、激光烧蚀、X射线荧光光谱、激光诱导击穿光谱等固体进样分析系统进行综述,并对这些技术在农业领域中的应用做了进一步的梳理。固体进样分析技术已在农业样品中元素的快速检测、现场监测、风险评估等工作中发挥着举足轻重的作用,相信随着仪器研发、材料科学、机器学习等新兴技术的快速发展,其结构小巧、使用简单、分析迅速等优势将会充分发挥,为农业领域中质量安全监管提供一种更为有效、可靠的快速检测手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号