首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model for the material damage, due to dynamic vibrations of a Kelvin‐Voigt viscoelastic beam whose tip is constrained to move between two stops, is presented and numerically analyzed. The contact of the free tip with the stops is described by the normal compliance condition. The evolution of damage of the beam's material, which measures the reduction of its load carrying capacity, is modeled with a parabolic inclusion. The existence of the unique local solution is stated. A numerical algorithm is presented, in which spatially it is approximated by finite elements, and the time derivatives are discretized with the Euler scheme. Error estimates are derived for sufficiently regular solutions, and four numerical simulations are shown. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

2.
In this paper we consider a hybrid elastic model consisting of a Timoshenko beam and a tip load at the free end of the beam. We show that uniform stabilization of the model which includes the rotary inertia of the tip load can be obtained when feedback boundary moment and force controls are applied at the point of contact between the beam and the tip load. However, in the presence of the load stabilization is “slower” and subject to a restriction on the boundary data at the free end of the beam.  相似文献   

3.
A model for the dynamic process of frictionless adhesive contact between a viscoelastic body and a reactive foundation, which takes into account the damage of the material resulting from tension or compression, is presented. Contact is described by the normal compliance condition. Material damage is modelled by the damage field, which measures the pointwise fractional decrease in the load-carrying capacity of the material, and its evolution is described by a differential inclusion. The model allows for different damage rates caused by tension or compression. The adhesion is modelled by the bonding field, which measures the fraction of active bonds on the contact surface. The existence of the unique weak solution is established using the theory of set-valued pseudomonotone operators introduced by Kuttler and Shillor (1999). Additional regularity of the solution is obtained when the problem data is more regular and satisfies appropriate compatibility conditions.  相似文献   

4.
We describe and analyse a model for a problem of thermoviscoelasticdynamic contact which allows for the general evolution of thematerial damage. The effects on the mechanical properties ofthe material due to crack expansion are described by a damagefield, which measures the decrease in the load-bearing capacityof the material. The damage process is assumed to be reversibleand the microcracks which develop as a result of tension orcompression may grow or disappear. The geometric setting isthat of a 1D rod which may contact a deformable obstacle. Thecontact is modelled by the normal compliance condition and thestress–strain constitutive equation is of Kelvin–Voigttype. The model consists of a coupled system of energy–elasticityequations together with a non-linear parabolic inclusion forthe damage field. The existence of a local weak solution isestablished using penalization, a finite element algorithm forthe solution is constructed and analysed and the results ofnumerical simulations based on this algorithm are presented.The simulations illustrate how the size of the normal compliancecoefficients, the damage rate coefficients and the applied forceaffect the character of the evolution of the damage. In particular,cycles of bonding and debonding can occur.  相似文献   

5.
Engineering systems, such as rolled steel beams, chain and belt drives and high-speed paper, can be modeled as axially translating beams. This article scrutinizes vibration and stability of an axially translating viscoelastic Timoshenko beam constrained by simple supports and subjected to axial pretension. The viscoelastic form of general rheological model is adopted to constitute the material of the beam. The partial differential equations governing transverse motion of the beam are derived from the extended form of Hamilton's principle. The non-transforming spectral element method (NTSEM) is applied to transform the governing equations into a set of ordinary differential equations. The formulation is similar to conventional FFT-based spectral element model except that Daubechies wavelet basis functions are used for temporal discretization. Influences of translating velocities, axial tensile force, viscoelastic parameter, shear deformation, beam model and boundary condition types are investigated on the underlying dynamic response and stability via the NTSEM and demonstrated via numerical simulations.  相似文献   

6.
The continuum damage model is based on a general thermodynamic framework for the modeling of rate and temperature dependent behavior of anisotropically damaged elastic-plastic materials subjected to fast deformation. The introduction of damaged and fictitious undamaged configurations allows the definition of damage tensors and the corresponding free energy functions lead to material laws affected by damage and temperature. The damage condition and the corresponding damage rule strongly depend on stress triaxiality. Furthermore, the rate and temperature dependence is reflected in a multiplicative decomposition of the plastic hardening and damage softening functions. The macro crack behavior is characterized by a triaxiality dependent fracture criterion. The continuum damage model is implemented into LS-DYNA as user defined material model. Corresponding numerical simulations of unnotched and notched tension tests with high strain rates demonstrate the plastic and damage processes during the deformation leading to final fracture numerically predicted by an element erosion technique. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Using a self-similar variables, an asymptotic investigation is carried out into the stress fields and the rates of creep deformations and degree of damage close to the tip of a tensile crack under creep conditions in a coupled (creep - damage) plane formulation of the problem. It is shown that a domain of completely damaged material (DCDM) exists close to the crack tip. The geometry of this domain is determined for different values of the material parameters appearing in the constitutive relations of the Norton power law in the theory of steady-state creep and a kinetic equation which postulates a power law for the damage accumulation. It is shown that, if the boundary condition at the point at infinity is formulated as the condition of asymptotic approximation to the Hutchinson–Rice-Rosengren solution [Hutchinson JW. Singular behaviour at the end of a tensile crack in a hardening material. J Mech Phys Solids 1968;16(1):13–31; Rice JR, Rosengren GF. Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids. 1968;16(1):1–12], then the boundaries of the DCDM, which are defined by means of binomial and trinomial expansions of the continuity parameter, are substantially different with respect to their dimension and shape. A new asymptotic of the for stress field, which determines the geometry of the DCDM and leads to close configurations of the DCDM constructed using binomial and trinomial asymptotic expansions of the continuity parameter, are established by an asymptotic analysis and a numerical solution of the non-linear eigenvalue problem obtained.  相似文献   

8.
We consider a quasistatic frictional contact problem between a piezoelectric body and a foundation. The contact is modeled with normal compliance and friction is modeled with a general version of Coulomb's law of dry friction; the process is quasistatic and the material's behavior is described by an electro-viscoelastic constitutive law with damage. We derive a variational formulation for the model which is in the form of a system involving the displacement field, the electric potential field, and the damage field. Then we provide the existence of a unique weak solution to the model. The proof is based on arguments of evolutionary variational inequalities and fixed point.  相似文献   

9.
In this contribution a coupled material framework is presented, which considers the effects of damage and growth in soft biological tissues. The tissue is described as a porous medium by taking into account a solid and a fluid phase. The fluid phase is assumed to carry nutrients supplying growth of the solid phase. The latter one is described as a fiber-reinforced material, where a damage variable is introduced for the fiber part of the associated free energy function. The performance of the proposed model is demonstrated in a finite element analysis of a simplified human heart model. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
在理想弹塑性材料中,高速扩展裂纹尖端的应力分量都只是θ的函数.利用这个条件以及定常运动方程,塑性应力应变关系和含有泊松比的Mises屈服条件,本文导出了高速扩展平面应变裂纹尖端的理想塑性场的一般表达式.将这些含有泊松比的一般表达式用于Ⅰ型裂纹,我们就得到高速扩展平面应变Ⅰ型裂纹尖端的理想塑性场.这个理想塑性场含有泊松比,所以,我们能知道泊松比对高速扩展平面应变Ⅰ型裂纹尖端的理想塑性场的影响.  相似文献   

11.
A combined continuum phase field model for martensitic transformations and damage is introduced. The present approach considers the eigenstrain within the martensitic phase which leads in the surrounding material to both tensile and compressive stresses. The damage model needs to account for an appropriate differentiation thereof, since compressive stresses should not promote fracture. Interactions between micro crack propagation and the formation of the martensitic phases are studied in two dimensions. In agreement with experimental observations, martensite forms at the crack tip and influences the crack formation. For the numerical implementation finite elements are used while for the transient terms an implicit time integration scheme is employed. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We consider a model for quasistatic frictional contact between a viscoelastic body and a foundation. The material constitutive relation is assumed to be nonlinear. The mechanical damage of the material, caused by excessive stress or strain, is described by the damage function, the evolution of which is determined by a parabolic inclusion. The contact is modeled with the normal compliance condition and the associated version of Coulomb's law of dry friction. We derive a variational formulation for the problem and prove the existence of its unique weak solution. We then study a fully discrete scheme for the numerical solutions of the problem and obtain error estimates on the approximate solutions.  相似文献   

13.
《Applied Mathematical Modelling》2014,38(11-12):2716-2733
In the design of high-Q micro/nano-resonators, dissipation mechanisms may have damaging effects on the quality factor (Q). One of the major dissipation mechanisms is thermoelastic damping (TED) that needs an accurate consideration for prediction. Aim of this paper is to evaluate the effect of TED on the vibrations of thin beam resonators. In particular, we will focus on cantilever beam resonator used in atomic force microscopy (AFM). AFM resonator is actually a cantilever with a spring attached to its free end. The end spring is considered to capture the effect of surface stiffness between tip and sample surface. The coupled governing equations of motion of thin beam with consideration of TED effects are derived. In general, there are four elastic equations that are coupled with thermal conduction equation. Based on accurate assumptions, these equations are simplified and the various boundary conditions have been used in order to validate the computational procedure. In order to accurately determine TED effects, the coupled thermal conduction equation is solved for the temperature field by considering three-dimensional (3-D) heat conduction along the length, width and thickness of the beam. Weighted residual Galerkin technique is used to obtain frequency shift and the quality factor of the thin beam resonator. The obtained results for quality factor, frequency shift and sensitivity change due to thermo-elastic coupling are presented graphically. Furthermore, the effects of beam aspect ratio, stress-free temperature on the quality factor and the influence of the surface stiffness on the frequencies and modal sensitivity of the AFM cantilever with and without considering thermo-elastic damping effects are discussed.  相似文献   

14.
We investigate a mathematical model for the dynamics of a beam with a tip body that experiences damping. The damping is due to granular material which partially fills the tip body. We establish the existence of the unique solution to the model and analyze the model. Among other things, we establish exponential energy decay when damping is present.  相似文献   

15.
Taking into account softening effects in connection with conventional inelastic material models can cause ill-posed boundary value problems. These problems can be established by obtaining no unique solution for the resulting algebraic system or by having a strong mesh dependence of the numerical results. This is the consequence of losing ellipticity of the governing field equations. A possible approach to solve these problems is to introduce a non-local field function in the model which includes an internal material length scale. For this purpose a gradient-enhanced free energy function is used for the current continuum damage model from which two variational equations are resulting. Calculations with less effort can be achieved due to the enhancement of the free energy function in comparison to other approaches. The mentioned model is applied to a material with locally varying damage properties (yield limits). Furthermore, the model is able to describe crack propagation in cases of completely damaged material. Therewith, a matrix material including precipitates, such as carbides, is modeled. This allows to investigate ship screws, which usually exhibit the mentioned composition, with regard to the influence of cavitation. Cavitation describes the implosion of risen vapor bubbles, whereby the impact on screws causes heavy damages which can lead to a complete destruction. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
17.
We show that the averaged response of random isotropic Cauchy elastic material can be described analytically. It leads to a higher gradient model with explicit expressions for the dependence on the second derivatives of the mean field. A subsequent penalty formulation coincides with a linear elastic micro-stretch model with specific choice of constitutive parameters, depending only on the average cut-off length (the internal characteristic length scale Lc > 0). Thus the microstretch displacement field can be interpreted as an approximated mean field response for these parameter ranges. The mean field free energy in this micro-stretch formulation is not uniformly pointwise positive, nevertheless, the model is well posed.   相似文献   

18.
Modeling and computation of a process with solid-liquid-solid phase transitions and a free capillary surface is discussed. The main components of the model are heat conduction, a free melt surface, a moving phase boundary, and its coupling with the Navier-Stokes equations. We present two different approaches for handling the phase transitions by applying in a FE method, namely an energy conservation based approach, and a sharp interface approach with moving mesh. By combining both methods, we benefit from the advantages of the respective approach. The methods are applied to a problem where material is accumulated by melting the tip of thin steel wires using laser heating. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this work, we consider mathematical and numerical approaches to a dynamic contact problem with a highly nonlinear beam, the so-called Gao beam. Its left end is rigidly attached to a supporting device, whereas the other end is constrained to move between two perfectly rigid stops. Thus, the Signorini contact conditions are imposed to its right end and are interpreted as a pair of complementarity conditions. We formulate a time discretization based on a truncated variational formulation. We prove the convergence of numerical trajectories and also derive a new form of energy balance. A fully discrete numerical scheme is implemented to present numerical results.  相似文献   

20.
梁的横向变形会导致梁纵向缩短,建模过程中考虑梁横纵变形二次耦合项则存在动力刚化现象,这说明梁的纵向变形会对模型的广义刚度造成影响.对于做旋转运动的梁结构,旋转运动时还会受到离心力的作用而产生轴向拉力,轴向拉力同样也会引起梁的轴向变形,这种影响对粗短梁更加明显.以大范围运动中心刚体-Timoshenko梁模型为研究对象:首先,运用Timoshenko梁理论以及Hamilton原理建立含离心力的动力学模型;其次,引入非约束模态概念,采用Frobenius方法求解非约束模态振型函数以及固有频率;最后,通过数值仿真探究不同恒定转速时非约束模态与约束模态广义刚度的差异和非约束模态条件下离心力对模型的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号