首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A posteriori error estimation is an important tool for reliable and efficient Galerkin boundary element computations. We analyze the mathematical relation between the h-h/2-error estimator from [S. Ferraz-Leite, D. Praetorius, Simple a posteriori error estimators for the h-version of the boundary element method, Computing 83 (2008) 135–162], the two-level error estimator from [S. Funken, Schnelle Lösungsverfahren für FEM-BEM Kopplungsgleichungen, Ph.D. thesis, University of Hannover, 1996 (in German); P. Mund, E. Stephan, J. Weisse, Two-level methods for the single layer potential in , Computing 60 (1998) 243–266], and the averaging error estimator from [C. Carstensen, D. Praetorius, Averaging techniques for the effective numerical solution of Symm's integral equation of the first kind, SIAM J. Sci. Comput. 27 (2006) 1226–1260]. We essentially show that all of these are equivalent, and we extend the analysis of [S. Funken, Schnelle Lösungsverfahren für FEM-BEM Kopplungsgleichungen, Ph.D. thesis, University of Hannover, 1996 (in German); P. Mund, E. Stephan, J. Weisse, Two-level methods for the single layer potential in , Computing 60 (1998) 243–266] to cover adaptive mesh-refinement. Therefore, all error estimators give lower bounds for the Galerkin error, whereas upper bounds depend crucially on the saturation assumption. As model examples, we consider first-kind integral equations in 2D with weakly singular integral kernel.  相似文献   

2.
An a posteriori error estimator is presented for the boundary element method in a general framework. It is obtained by solving local residual problems for which a local concept is introduced to accommodate the fact that integral operators are nonlocal operators. The estimator is shown to have an upper and a lower bound by the constant multiples of the exact error in the energy norm for Symm's and hypersingular integral equations. Numerical results are also given to demonstrate the effectiveness of the estimator for these equations. It can be used for adaptive h,p, and hp methods.  相似文献   

3.
Based on a posteriori error estimator with hierarchical bases, an adaptive weak Galerkin finite element method (WGFEM) is proposed for the elliptic problem with mixed boundary conditions. For the posteriori error estimator, we are only required to solve a linear algebraic system with diagonal entries corresponding to the degree of freedoms, which significantly reduces the computational cost. The upper and lower bounds of the error estimator are shown to addresses the reliability and efficiency of the adaptive approach. Numerical simulations are provided to demonstrate the effectiveness and robustness of the proposed method.  相似文献   

4.
A general construction technique is presented for a posteriori error estimators of finite element solutions of elliptic boundary value problems that satisfy a Gång inequality. The estimators are obtained by an element–by–element solution of ‘weak residual’ with or without considering element boundary residuals. There is no order restriction on the finite element spaces used for the approximate solution or the error estimation; that is, the design of the estimators is applicable in connection with either one of the hp–, or hp– formulations of the finite element method. Under suitable assumptions it is shown that the estimators are bounded by constant multiples of the true error in a suitable norm. Some numerical results are given to demonstrate the effectiveness and efficiency of the approach.  相似文献   

5.
Adaptive refinement techniques are developed in this paper for the meshless Galerkin boundary node method for hypersingular boundary integral equations. Two types of error estimators are derived. One is a perturbation error estimator that is formulated based on the difference between numerical solutions obtained using two consecutive nodal arrangements. The other is a projection error estimator that is formulated based on the difference between the numerical solution itself and its projection. These error estimators are proven to have an upper and a lower bound by the constant multiples of the exact error in the energy norm. A localization scheme is presented to accomodate the non-local property of hypersingular integral operators for the needed computable local error indicators. The convergence of the adaptive meshless techniques is verified theoretically. To confirm the theoretical results and to show the efficiency of the adaptive techniques, numerical examples in 2D and 3D with high singularities are provided.  相似文献   

6.
In product development, engineers simulate the underlying partial differential equation many times with commercial tools for different geometries. Since the available computation time is limited, we look for reduced models with an error estimator that guarantees the accuracy of the reduced model. Using commercial tools the theoretical methods proposed by G. Rozza, D.B.P. Huynh and A.T. Patera [Reduced basis approximation and a posteriori error estimation for affinely parameterized elliptic coercive partial differential equations, Arch. Comput. Methods Eng. 15 (2008), pp. 229–275] lead to technical difficulties. We present how to overcome these challenges and validate the error estimator by applying it to a simple model of a solenoid actuator that is a part of a valve.  相似文献   

7.
In the numerical treatment of integral equations of the first kind using boundary element methods (BEM), the author and E. P. Stephan have derived a posteriori error estimates as tools for both reliable computation and self-adaptive mesh refinement. So far, efficiency of those a posteriori error estimates has been indicated by numerical examples in model situations only. This work affirms efficiency by proving the reverse inequality. Based on best approximation, on inverse inequalities and on stability of the discretization, and complementary to our previous work, an abstract approach yields a converse estimate. This estimate proves efficiency of an a posteriori error estimate in the BEM on quasi--uniform meshes for Symm's integral equation, for a hypersingular equation, and for a transmission problem.

  相似文献   


8.
We present and analyze an a posteriori error estimator based on mesh refinement for the solution of the hypersingular boundary integral equation governing the Laplacian in three dimensions. The discretization under consideration is a nonconforming domain decomposition method based on the Nitsche technique. Assuming a saturation property, we establish quasireliability and efficiency of the error estimator in comparison with the error in a natural (nonconforming) norm. Numerical experiments with uniform and adaptively refined meshes confirm our theoretical results. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 947–963, 2014  相似文献   

9.
We consider an augmented mixed finite element method applied to the linear elasticity problem and derive a posteriori error estimators that are simpler and easier to implement than the ones available in the literature. In the case of homogeneous Dirichlet boundary conditions, the new a posteriori error estimator is reliable and locally efficient, whereas for non-homogeneous Dirichlet boundary conditions, we derive an a posteriori error estimator that is reliable and satisfies a quasi-efficiency bound. Numerical experiments illustrate the performance of the corresponding adaptive algorithms and support the theoretical results.  相似文献   

10.
In this article a strategy of adaptive finite element for semi-linear problems, based on minimizing a residual-type estimator, is reported. We get an a posteriori error estimate which is asymptotically exact when the mesh size h tends to zero. By considering a model problem, the quality of this estimator is checked. It is numerically shown that without constraint on the mesh size h, the efficiency of the a posteriori error estimate can fail dramatically. This phenomenon is analysed and an algorithm which equidistributes the local estimators under the constraint h ⩽ h max is proposed. This algorithm allows to improve the computed solution for semi-linear convection–diffusion problems, and can be used for stabilizing the Lagrange finite element method for linear convection–diffusion problems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
In this article, an abstract framework for the error analysis of discontinuous finite element method is developed for the distributed and Neumann boundary control problems governed by the stationary Stokes equation with control constraints. A priori error estimates of optimal order are derived for velocity and pressure in the energy norm and the L2-norm, respectively. Moreover, a reliable and efficient a posteriori error estimator is derived. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. In particular, we consider the abstract results with suitable stable pairs of velocity and pressure spaces like as the lowest-order Crouzeix–Raviart finite element and piecewise constant spaces, piecewise linear and constant finite element spaces. The theoretical results are illustrated by the numerical experiments.  相似文献   

12.
Summary. Three a posteriori error estimators for PEERS and BDMS elements in linear elasticity are presented: one residual error estimator and two estimators based on the solution of auxiliary local problems with different boundary conditions. All of them are reliable and efficient with respect to the standard norm and furthermore robust for nearly incompressible materials.Correspondence to: R. Verfürth  相似文献   

13.
We propose an almost optimal preconditioner for the iterative solution of the Galerkin equations arising from a hypersingular integral equation on an interval. This preconditioning technique, which is based on the single layer potential, was already studied for closed curves [11,14]. For a boundary element trial space, we show that the condition number is of order (1 + | log h min|)2, where h min is the length of the smallest element. The proof requires only a mild assumption on the mesh, easily satisfied by adaptive refinement algorithms.  相似文献   

14.
In this paper, a new numerical method is proposed and analyzed for the Allen–Cahn (AC) equation. We divide the AC equation into linear section and nonlinear section based on the idea of operator splitting. For the linear part, it is discretized by using the Crank–Nicolson scheme and solved by finite element method. The nonlinear part is solved accurately. In addition, a posteriori error estimator of AC equation is constructed in adaptive computation based on superconvergent cluster recovery. According to the proposed a posteriori error estimator, we design an adaptive algorithm for the AC equation. Numerical examples are also presented to illustrate the effectiveness of our adaptive procedure.  相似文献   

15.
In this paper, we propose a posteriori error estimators for certain quantities of interest for a first-order least-squares finite element method. In particular, we propose an a posteriori error estimator for when one is interested in where . Our a posteriori error estimators are obtained by assigning proper weight (in terms of local mesh size hT) to the terms of the least-squares functional. An a posteriori error analysis yields reliable and efficient estimates based on residuals. Numerical examples are presented to show the effectivity of our error estimators.  相似文献   

16.
We consider a posteriori error estimation for a multipoint flux mixed finite element method for two‐dimensional elliptic interface problems. Within the class of modified quasi‐monotonically distributed coefficients, we derive a residual‐type a posteriori error estimator of the weighted sum of the scalar and flux errors which is robust with respect to the jumps of the coefficients. Moreover, we develop robust implicit and explicit recovery‐type estimators through gradient recovery in an H(curl)‐conforming finite element space. In particular, we apply a modified L2 projection in the implicit recovery procedure so as to reduce the computational cost of the recovered gradient. Numerical experiments confirm the theoretical results.  相似文献   

17.
An adaptive refinement strategy for the hp‐version of the boundary element method with hypersingular operators on surfaces is presented. The error indicators are based on local projections provided by two‐level decompositions of ansatz spaces with additional bubble functions. Assuming a saturation property and locally quasi‐uniform meshes, efficiency and reliability of the resulting error estimator is proved. A second error estimator based on mesh refinement and overlapping decompositions that better fulfills the saturation property is presented. The performance of the algorithm and the estimators is demonstrated for a model problem. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 396–419, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10011  相似文献   

18.
In this paper, we study the global convergence for the numerical solutions of nonlinear Volterra integral equations of the second kind by means of Galerkin finite element methods. Global superconvergence properties are discussed by iterated finite element methods and interpolated finite element methods. Local superconvergence and iterative correction schemes are also considered by iterated finite element methods. We improve the corresponding results obtained by collocation methods in the recent papers [6] and [9] by H. Brunner, Q. Lin and N. Yan. Moreover, using an interpolation post-processing technique, we obtain a global superconvergence of the O(h 2r )-convergence rate in the piecewise-polynomial space of degree not exceeding (r–1). As a by-product of our results, all these higher order numerical methods can also provide an a posteriori error estimator, which gives critical and useful information in the code development.  相似文献   

19.
In this paper, we investigate the superconvergence properties of the h-p version of the finite element method (FEM) for two-point boundary value problems. A postprocessing technique for the h-p finite element approximation is analyzed. The analysis shows that the postprocess improves the order of convergence. Furthermore, we obtain asymptotically exact a posteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis.  相似文献   

20.
This paper presents a method of estimation of an “optimal” smoothing parameter (window width) in kernel estimators for a probability density. The obtained estimator is calculated directly from observations. By “optimal” smoothing parameters we mean those parameters which minimize the mean integral square error (MISE) or the integral square error (ISE) of approximation of an unknown density by the kernel estimator. It is shown that the asymptotic “optimality” properties of the proposed estimator correspond (with respect to the order) to those of the well-known cross-validation procedure [1, 2]. Translated fromStatisticheskie Metody Otsenivaniya i Proverki Gipotez, pp. 67–80, Perm, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号