首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
A series of competitive metal-ion transport experiments has been performed.Each involved transport from an aqueous source phase across an organic membrane phase into an aqueous receiving phase.The source phase contained equimolar concentration of Co(Ⅱ),Ni(Ⅱ),Zn(Ⅱ),Cd(Ⅱ),Ag(Ⅰ),Cu(Ⅱ) and Mn(Ⅱ) metal cations.The transport experiments of metal cations were carried out by 2,2’-dithio(bis)benzothiazole(DTB) in chloroform(CHCl3).The source phase being buffered at range pH of 4-6.5 and receiving phase being buffered at pH 3.The obtained results show that the selectivity and the efficiency of Ag(I) transport from aqueous solutions are observed in this investigation.The effect of concentration of palmitic acid in the transport efficiency of Ag(Ⅰ) ion was also conformed.  相似文献   

2.
This paper deals with the transport properties of oligomer of polythioether PSA used as mobile carrier in bulk liquid membrane for gold(Ⅲ). It was found that Au(Ⅲ) can be transported by PSA from source phase to receiving phase completely under appropriate conditions and only Au (Ⅲ) can be transferred through the liquid membrane to receiving phase from a mixture of Na(Ⅰ)-Cu(Ⅱ)-Au (Ⅲ) - Fe (Ⅲ) - Pt(Ⅳ) in the following system, HAuCl4 - HCl (aq.)/PSA -ClCH2-CH2Cl/(NH2)2CS-HCl(aq.). The transport rate of Au(Ⅲ) depended on the concentration of carrier, the thickness of liquid membrane, the concentration of Au(Ⅲ) in source phase and the acidity of the media.  相似文献   

3.
This paper deals with the transport properties of oligomer of polythioether PSA used as moble carrier in bulk liquid membrane for gold(Ⅲ).It was found that Au(Ⅲ) can be transported by PSA from source phase to receiving phase completely under appropriate conditions and only Au(Ⅲ) can be transferred through the liquid membrane to receiving phase from a mixture of Na(I)-Cu(Ⅱ)-Au(Ⅲ)-Fe(Ⅲ)-Pt(Ⅳ) in the following system:HAuCl4-HCl(aq.)/PSA-ClCH2-CH2Cl/(NH2)2CS-HCl(aq.).The transport rate of Au(Ⅲ) depended on the concentration of carrier,the thickness of liquid membrane,the concentration of Au(Ⅲ) in source phase and the acidity of the media.  相似文献   

4.
A new ELM was prepared for the study on transport of Mo(Ⅵ) ion. Under the experimental conditions, Mo(Ⅵ) can be transported completely and separated from the co-lons.The emulsion liquid membrane(ELM) with Tri-n-octylamine(TOA) as a carrier used for the transport of Mo(Ⅵ) ions and its separation from some cations have been reported in this paper. The transport percentage of Mo(Ⅵ) ion through ELM in 5 min corresponds to that of the literature in 165 min.  相似文献   

5.
In this work, the zeolite-Y was ion-exchanged by introducing silver cations into the framework of microsized nano-porous sodium zeolite-Y using a liquid-phase ion exchanged method. The Ag+ion-exchanged zeolite, was then embedded into the Matrimid~5218 matrix to form novel mixed matrix membranes(MMMs). The particles and MMMs were characterized by ultraviolet-visible diffuse reflectance spectroscopy(UV–vis DRS), N_2 adsorption–desorption isotherm, X-ray diffraction(XRD), Fourier transform infrared(FTIR) and scanning electron microscopy(SEM). Furthermore, the effects of filler content(0–20wt%) on pure and mixed gas experiments, feed pressure(2–20 bar) and operating temperature(35–75 oC)on CO_2/CH_4 transport properties of Matrimid/Ag Y MMMs were considered. Characterization results confirmed an appropriate ion-exchange treatment of the zeolites. The SEM results confirmed the superior interfacial adhesion between polymer and zeolites, particularly in the case of Matrimid/Ag Y membranes.This is due to the proper silverous zeolite/Matrimid functional groups' interactions. The gas permeation results showed that the CO_2 permeability increased about 123%, from 8.34 Barrer for pure Matrimid to18.62 Barrer for Matrimid/Ag Y(15 wt%). The CO_2/CH_4 selectivity was improved about 66%, from 36.3 for Matrimid to 60.1 for Matrimid/Ag Y(15 wt%). The privileged gas separation performance of Matrimid/Ag Y(15 wt%) was the result of a combined effect of facilitated transport mechanism of Ag+ions as well as the intrinsic surface diffusion mechanism of Y-type zeolite. In order to survey the possibility of using the developed MMMs in industry, the CO_2-induced plasticization effect and mixed gas experiment were accomplished. It was deduced that the fabricated MMMs could maintain the superior performance in actual operating conditions.  相似文献   

6.
A novel proton exchange membrane(PEM) was designed and prepared from a polymer containing calix[4]arene as the functional unit to transport proton.The proton-conductivity of this membrane is about the same order of magnitude as that of Nation~(?) 112 membrane.It is of interest to note that very different from most of the currently known PEMs,this membrane can transport proton without the help of water or other solvents.It is deduced that the protons are transported via an ion tunneling model.This opens u...  相似文献   

7.
A new ion-imprinted polymer(ⅡP) was synthesized by copolymerization of 4-vinylpyridine(monomer), ethyleneglycoldimethacrylate(cross-linker) and 2,2-azobis-isobutyronitrile(initiator) in the presence of Cd2+ and quinaldic acid(complexing agent).It was found that the adsorption capacity of IIP and blank polymer were 45.0 and 6.2 mg g-1, respectively.The relative selectivity coefficients of the imprinted polymer for different binary mixture were also calculated. Compared to non-imprinted polymer(NIP),theⅡP had higher selectivity for Cd(Ⅱ).TheⅡP was used as a sorbent for cadmium extraction from water samples by using a simple batch extraction procedure.The effect of different parameters on Cd2+ extraction and its recovery from theⅡP were evaluated and optimized by using experimental design methodology.The optimized adsorption/desorption procedure was applied for cadmium removal from the real water samples.The obtained recoveries proved that thisⅡP could be used for removal of trace cadmium ions from water samples.  相似文献   

8.
A novel Ni(Ⅱ) ion-imprinted silica gel polymer was prepared via the surface imprinting technique combined with aqueous solution polymerization by using 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPS) as a functional monomer for the selective separation of Ni(Ⅱ) from aqueous solution. The sorbent showed good chemical and thermal stability. Kinetics studies indicated that the equilibrium adsorption was achieved within 10 min and the adsorption kinetics fitted well with the pseudo-second-order kinetic model. The maximum adsorption capacity of the ion-imprinted polymer towards Ni(Ⅱ) at the optimal p H of 7.0 was 66.22 mg·g~(-1). The relative selectivity coefficients of the sorbent were 9.23, 15.71, 14.72 and 20.15 for Ni(Ⅱ)/Co(Ⅱ), Ni(Ⅱ)/Cu(Ⅱ), Ni(Ⅱ)/Zn(Ⅱ) and Ni(Ⅱ)/Pb(Ⅱ), respectively. The adsorption isotherm fitted well with Langmuir isotherm model. The thermodynamic results indicated that the adsorption of Ni(Ⅱ) was a spontaneous and endothermic process. The sorbent showed good reusability evidenced by six cycles of adsorption/desorption experiments. The precision of this method is satisfactory. Thus, the prepared sorbent can be considered as a promising sorbent for selective separation of Ni(Ⅱ) in real water samples.  相似文献   

9.
N530-OT-煤油-HCl反萃分散组合液膜体系迁移和分离铜的研究   总被引:3,自引:0,他引:3  
The transport and separation of copper(Ⅱ) from waste water by a N530-OT-kerosene-HCl strip dispersion hybrid liquid membrane system was studied. The influence of penetrant OT, N530 concentration, pH in feed phase, membrane area, HCl concentration in stripping phase, and volume ratio of membrane phase to stripping phase on transport and separation were also investigated. The experiments demonstrate that Cu(Ⅱ) can be transported selectively from the binary Cu(Ⅱ) and Fe(Ⅲ) solution to stripping phase and that the transport percentage of Cu(Ⅱ) exceeds 93.8% and Fe(Ⅲ) is only 1.8% after transport of 6 hours.  相似文献   

10.
Mycelium of a cultivated strain of Poria cocos was grown by submerged fermentation in a liquid mediumcontaining corn steep liquor with orbital shaking. Six polysaccharides coded as ac-PCM1, ac-PCM2, ac-PCM3-Ⅰ andⅡ, ac-PCM4-Ⅰand Ⅱ were isolated from the myelium by extracting with 0.9% NaCl aqueous solution, hot water, 0.5 mol/L NaOHaqueous solution and 88% formic acid. Exo-polysaccharide was obtained from the culture medium and coded as ac-PCM0.The monosaccharide composition and molecular weights of these polysaccharides were characterized by using infraredspectroscopy, gas chromaography, elemental analysis, ~(13)C-NMR, viscometry and light scattering. The results indicated thatac-PCM0, ac-PCM1 and ac-PCM2 are heteropolysaccharides containing glucose, galactose, mannose and fucose, and ac-PCM3-Ⅰ and ac-PCM3-Ⅱ mainly consist of D-glucose. The content of the glucose in the polysaccharides increased with theisolation progress. Remarkably, α-glucan and β-glucan coexisted in the extract by NaOH aqueous solution (ac-PCM3), andcould be separated by chemical methods. The protein in the ac-PCM polysaccharides cultured from the medium containingcorn steep liquor was higher than that in the ab-PCM from the medium with bran extract. Therefore, the polysaccharidesfrom Poria cocos mycelia cultured in different media have different chemical composition, molecular weights and conformations.  相似文献   

11.
The selective polymer membrane transport of Cu(II) from an aqueous solution containing seven metal cations, Co(II), Ni(II), Cu(II), Zn(II), Ag(II), Cd(II) and Pb(II), was studied .The source phase contained equimolar concentrations of the above-mentioned cations, with the source and receiving phases being buffered at pH 4.9 and 3.0, respectively. Cu(II) ion transport occurred (J=2.82 × 10−7 mol/h at 25 °C) from the aqueous source phase across the polymer membrane (derived from cellulose triacetate) containing ligand (I) as the ionophore, into the aqueous receiving phase. Clear transport selectivity for Cu(II) was observed.  相似文献   

12.
The competitive metal ion transport of copper(II), cobalt(II), zinc(II), cadmium(II), silver(I), chromium(III) and lead(II) with a S-O donor compound was examined. Competitive transport experiments involving the metal cations from an aqueous source phase through an organic membrane into an aqueous receiving phase have been carried out using 5,12-di(phenoxymethyl)-1,4-dioxa-7,10-dithiacyclododecane-2,3-dione as the ionophore present in the organic phase. Fluxes and selectivities for competitive metal cations transport across bulk liquid membranes have been determined in a variety of chlorinated hydrocarbon and aromatic hydrocarbon solvents. The membrane solvents include: dichloromethane (DCM), chloroform (CHCl3), 1,2-dichloroethane (1,2-DCE), and nitrobenzene (NB) and also in chloroform-dichloromethane (CHCl3-DCM) and chloroform-nitrobenzene (CHCl3-NB) binary mixtures. Although the selectivity for silver(I) cation in all of these organic solvents is fundamentally similar, but the most transport rate for Ag(I) was obtained in dichloromethane. The sequence of transport rate for silver ion in organic solvents was: DCM > CHCl3 > 1,2-DCE > NB. A linear relationship was observed between the transport rate of silver ion and the composition of CHCl3-DCM, but a non-linear behavior was observed in the case of CHCl3-NB binary solution. The influence of the stearic, palmetic and oleic acids as surfactant in the membrane phase on the transport of the metal cations was also investigated.  相似文献   

13.
Safavi A  Shams E 《Talanta》1999,48(5):221-1172
Transport of Ag+ as Ag(CN)2 ions through a bulk liquid membrane is reported. The bulk liquid membrane used is a solution of Victoria blue (VB) in chloroform. The effects of pH of the source phase, cyanide concentration in the source phase, sodium hydroxide in the receiving phase, and VB concentration in the organic phase on the efficiency of the transport system were studied. The above system has a high selectivity for Ag+ and can selectively and efficiently transport Ag(CN)2 ion from aqueous solutions containing other cations such as alkali and alkaline earths, Zn2+, Pd2+, Cu2+, Cd2+,Hg2+, Co2+, Fe2+, Pb2+, Ni2+, and Al3+.  相似文献   

14.
Four previously documented ligand design strategies for achieving Ag(I) discrimination have been applied to the design of a new N-benzylated N2S3-donor macrocycle; the latter shows high selectivity for Ag(I) over Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) in log K and bulk membrane transport studies.  相似文献   

15.
The competitive bulk liquid membrane transport of Cr3+, Co2+, Cu2+, Zn2+, Cd2+, Ag+ and Pb2+ metal cations with a new synthetic sulfur donor acyclic ligand (pseudo-cyclic ionophore), i.e. 1-(2-[(2-hydroxy-3-phenoxypropyl)sulfanyl]ethylsulfanyl)-3-phenoxy-2-propanol; (C20H26O4S2), was examined using some organic solvents as membranes. The membrane solvents include: chloroform (CHCl3), 1,2-dichloroethane (1,2-DCE), dichloromethane (DCM), nitrobenzene (NB), chloroform-nitrobenzene (CHCl3-NB) and chloroform-dichloromethane (CHCl3-DCM) binary mixtures. The transport process was driven by a back flux of protons, maintained by the buffering the source and receiving phases with pH 5 and 3, respectively. The aqueous source phase consisted of a buffer solution (CH3COOH/CH3COONa) at pH = 5 and containing an equimolar mixture of these seven metal cations. The organic phase contained the acyclic ligand, as an ionophore and the receiving phase consisted of a buffer solution (HCOOH/HCOONa) at pH = 3. For these systems that displayed transport behaviour, sole selectivity for Ag+ cation was observed under the employed experimental conditions in this investigation. The amount of Ag+ transported follows the trend: 1,2-DCE > CHCl3 > DCM > NB in the bulk liquid membrane studies. The transport of the metal cations in CHCl3-NB and CHCl3-DCM binary solvents is sensitive to the solvent composition. The influence of the stearic acid, palmitic acid and oleic acid in the membrane phase on the ion transport was also investigated.  相似文献   

16.
The transport experiments of Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Ag+ and Pb2+ metal cations were carried out by dibenzo-18-crown-6 (DB18C6), dibenzyl-diaza-18-crown-6 (Dibenzyl-diaza-18C6) and di-tert-butyl-dibenzo-18-crown-6 (Di-tert-butyl-DB18C6) using chloroform (CHCl3), 1,2-dichloroethane (1,2-DCE) and nitrobenzene (NB) organic solvents as liquid membranes. The source phase contained equimolar concentration of these metal cations and the source and receiving phases being buffered at pH=5 and pH=3, respectively. The obtained results show that the selectivity and the efficiency of transport for these heavy metal cations change with the nature of the ligand and also the organic solvents, which were used as liquid membranes in these experiments. A good selectivity was observed for silver (I) ion by dibenzyl-diaza-18C6 in all membrane systems. Dibenzo-18C6 and di-tert-butyl-DB18C6 showed the highest transport efficiency for cobalt (II) ion. The effect of stearic acid on transport efficiency was also investigated and the results show that the efficiency of transport of the heavy metal cations increases in the presence of this organic acid.  相似文献   

17.
Using functionalized calix[4]arene carrier 1 in a PIM system, Hg(II) is transported with high selectivity from acidic aqueous source phase solutions of Cd(II), Hg(II) and Pb(II) with high NaNO3 concentration into aqueous receiving solutions containing EDTA. To gain insight into this transport selectivity, complexation studies of the three heavy metal perchlorate species by ligand 1 were conducted in acetonitrile. Although 1:1 complexation of the divalent heavy metal cation by 1 was observed for Cd(II), the stoichiometries were more complicated for Hg(II) and Pb(II). Selective Hg(II) transport across the PIM is attributed to both the strength and stoichiometry of the metal ion-carrier species forming at the source phase-membrane interphase and its stripping from the membrane into the receiving phase by EDTA.  相似文献   

18.
Competitive transport experiments involving Fe+3, Cr+3, Ni+2, Co+2, Ca+2, Mg+2 and K+ metal cations from an aqueous source phase through some organic membranes into an aqueous receiving phase have been carried out using 4,13-diaza-18-crown-6 (kryptofix 22) as an ionophore present in the organic membrane phase. Fluxes and selectivities for competitive of the metal cations transport across bulk liquid membranes have been determined. A good selectivity was observed for K+ cation by kryptofix 22 in 1,2-dichloroethane (1,2-DCE) membrane system. The sequence of selectivity for potassium ion in the organic solvents was found to be: 1,2-DCE > DCM (dichloromethane) >CHCl3. The transport of K+ cation was also studied in the DCM-1,2-DCE, CHCl3-1,2-DCE and CHCl3-DCM binary mixed solvents as membrane phase. A non-linear relationship was observed between the transport rate of K+ ion and the composition of these binary mixed solvents. The amount of K+ transported follows the trend: DCM-DCE > CHCl3-DCE > CHCl3-DCM in the bulk liquid membrane studies. Then, the selective transport of K+ cation through a DCM-1,2-DCE bulk liquid membrane was studied by kryptofix 22 as an efficient carrier. The highest transport efficiency was obtained by investigating the influence of different parameters such as the concentration of kryptofix 22 in the membrane phase, pH of the source and the receiving phases and the equilibrium time of the transport process. Maximum transport value of 71.62 ± 1.61% was observed for K+ ion after 4 hours, when its concentration was 4 × 10–3 M.  相似文献   

19.
A series of competitive metal ion transport experiments have been performed. Each involved transport from an aqueous source phase across an organic membrane phase into an aqueous receiving phase. The source phase contained equimolar concentrations of cobalt(II), nickel(II), cupper(II), zinc(II), cadmium(II), silver(I) and lead(II) metal cations. The membrane phase incorporated ionophore, decyl-18-crown-6. The membrane solvents include: chloroform, dichloromethane, 1,2-dichloroethane, nitrobenzene and chloroform–nitrobenzene binary solvents. A good transport efficiency and selectivity of Pb2+ transport from aqueous solutions are observed in this investigation. The selectivity order for competitive bulk liquid membrane transport of the studied transition and post transition metal cations through chloroform is: Pb2+>Co2+>Ni2+>Ag+>Cd2+, but in the case of dichloromethane, 1,2-dichloroethane and nitrobenzene as liquid membranes, the selectivity sequences were found to be: Pb2+>Co2+>Cd2+>Cu2+>Ag+>Ni2+>Zn2+, Pb2+>Co2+>Ag+>Ni2+>Zn2+ and Pb2+>Co2+>Ni2+>Zn2+>Cd2+>Ag+, respectively. The transport rate of the metal cations in chloroform–nitrobenzene binary solvents is sensitive to the solvent composition. The transport processes were studied in absence and presence of the stearic acid and the results show that the sequence of selectivities and ion transport rates change in the presence of stearic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号