首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The attachment of redox-active molecules such as porphyrins to an electroactive surface provides an attractive approach for electrically addressable molecular-based information storage. Porphyrins are readily attached to a gold surface via thiol linkers. The rate of electron transfer between the electroactive surface and the porphyrin is one of the key factors that dictates suitability for molecular-based memory storage. This rate depends on the type and length of the linker connecting the thiol unit to the porphyrin. We have developed different routes for the preparation of thiol-derivatized porphyrins with eight different linkers. Two sets of linkers explore the effects of linker length and conjugation, with one set comprising phenylethyne units and one set comprising alkyl units. One electron-deficient linker has four fluorine atoms attached directly to a thiophenyl unit. To facilitate the synthesis of the porphyrins, convenient routes have been developed to a wide range of aldehydes possessing a protected S-acetylthio group. An efficient synthesis of 1-(S-acetylthio)-4-iodobenzene also has been developed. A set of porphyrins, each bearing one S-acetyl-derivatized linker at one meso position and mesityl moieties at the three remaining meso positions, has been synthesized. Altogether seven new aldehydes, eight free base porphyrins and eight zinc porphyrins have been prepared. The zinc porphyrins bearing the different linkers all form self-assembled monolayers (SAMs) on gold via in situ cleavage of the S-acetyl protecting group. The SAM of each porphyrin is electrochemically robust and exhibits two reversible oxidation waves.  相似文献   

2.
Self‐assembled porphyrins via noncovalent bonding have attracted wide‐ranging researchers in material science. We reported herein the synthesis of the tetraphenyl porphyrin derivatives bearing uracyl groups as acceptor–donor–acceptor (ADA) type hydrogen bonding units, through the condensation of 5,10‐ or 5,15‐bis (3‐amino‐4‐ethylhexylphenyl) porphyrin derivatives with 6‐carboxyuracyl derivatives. When two porphyrins having uracyl groups at the different substituted positions were respectively mixed with a melamine derivative in benzene, 1H NMR spectra showed that the 5,15 substituted uracyl porphyrin formed a hydrogen‐bonded suprastructure with the melamine derivative as a complementary molecule to the uracyl moiety, although the other 5,10‐substituted uracylporphyrin could not form such a structure. The SEM observation indicated that the mixture with the 5,15‐substituted uracyl porphyrin and the melamine with long alkyl chains formed a sheet‐like structure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Bis(zinc porphyrin) scaffolds bearing C8 or C18 alkyl chains and imidazole end groups self‐assembled in a head‐to‐tail fashion into multi‐porphyrin assemblies on both HOPG and mica. Due to weaker molecule surface‐interactions, longer arrays formed on mica than on HOPG. In both cases, it was essential first to generate monomers that were drop casted on the surface, then to allow time for the bis(zinc porphyrins) to assemble. Although thicker fibrous assemblies were observed with the C8 alkyl substituents than with the longer chains, noncovalent assemblies up to 1 μm long were observed for each molecule. These investigations provide a reproducible, noncovalent method to grow porphyrin arrays that may be of interest in molecular electronics for charge transport.  相似文献   

4.
Chiral aggregation of oligo(p-phenylene vinylene)-functionalized Zn and free-base porphyrins is observed in water. The formation of mixed assemblies containing both porphyrins results in sequential energy transfer from OPV via zinc porphyrin to free-base porphyrin. Furthermore, the incorporation of C60 as electron acceptor yields a charge separated state by ultimate electron transfer.  相似文献   

5.
An efficient noncovalent assembly process involving high geometrical control was applied to a linear bis(imidazolyl zinc porphyrin) 7Zn, bearing C(18) substitutents, to generate linear multiporphyrin wires. The association process is based on imidazole recognition within the cavity of the phenanthroline-strapped zinc porphyrin. In chlorinated solvents, discrete soluble oligomers were obtained after (7Zn)(n) was end-capped with a terminal single imidazolyl zinc porphyrin derivative 4Zn. These soluble species, as well as their destabilization in the presence of protic solvents, were studied by UV-visible and time-resolved luminescence. In the solid state, assemblies as long as 480 nm, which corresponds to 190 iterative units or a total of 380 porphyrins, were observed by atomic force microscopy measurements on mica. The length and linearity of the porphyrin wires obtained illustrate the potential of phenanthroline-strapped porphyrins for the directional control of self-assembly processes.  相似文献   

6.
The assembly of imidazole‐functionalized phenanthroline‐strapped zinc porphyrins (ZnPorphen) with alkyl or polyethylene glycol (PEG) side chains was studied in solution and by AFM after casting on highly oriented pyrolytic graphite (HOPG) or mica. The nature of the solvent and its evaporation time influenced the morphology of the objects observed. On HOPG, short rods of about 100 nm were observed after fast evaporation of solutions of the alkyl derivatives in CHCl3, THF, or pyridine, whereas islands of aligned rows of longer wires were obtained from methylcyclohexane (MCH). Slow evaporation of MCH led to a three‐dimensional assembly. The PEG porphyrin assembled into short wires on HOPG or fibers on mica after slow evaporation of solutions in THF. This study shows the role of surface–molecule interactions in the interfacial assembly of ZnPorphen derivatives and contributes to understanding the parameters that control their noncovalent assembly into molecular wires on a surface.  相似文献   

7.
Alkyl-chain-assisted self-assembled monolayers of pyridine-coordinated porphyrin rhodium chlorides were observed at the solid-liquid interface by scanning tunneling microscopy (STM). The resolved images at a molecular level were obtainable in the pure solution of pyridine-coordinated porphyrin rhodium chloride with four triacontyl groups [Rh(C300PP)(Cl)(Py)]. In the case of pyridine-coordinated porphyrin rhodium chloride with four octadecyl groups [Rh(C18OPP)(Cl)(Py)], the STM images were not obtainable in the pure solution of Rh(C18OPP)(Cl)(Py) but obtainable in the mixture containing Rh(C18OPP)(Cl)(Py) and free porphyrin C18OPP. On the basis of the mixed self-assembled monolayer analysis, the apparent difference in the adsorption free energy between Rh(CnOPP)(Cl)(Py) and CnOPP (deltaGapp) was calculated. The calculated deltaGapp values for C18OPP and C30OPP mixed systems were quite different. The disadvantage of the adsorption free energy of Rh(C18OPP)(Cl)(Py) makes it difficult to obtain molecularly resolved images of Rh(C18OPP)(Cl)(Py), and the large adsorption energy due to the long alkyl chains enabled us to obtain molecularly resolved images of Rh(C30OPP)(Cl)(Py).  相似文献   

8.
Two self-complementary phenanthroline-strapped porphyrins bearing imidazole arms and C 12 or C 18 alkyl chains were synthesized, and their surface self-assembly was investigated by atomic force microscopy (AFM) on mica and highly ordered pyrrolitic graphite (HOPG). Upon zinc(II) complexation, stable porphyrin dimers formed, as confirmed by DOSY (1)H NMR and UV-visible spectroscopy. In solution, the dimers formed J-aggregates. AFM studies of the solutions dip-coated onto mica or drop-casted onto HOPG revealed that the morphologies of the assemblies formed were surface-tuned. On mica, fiber-like assemblies of short stacks of J-aggregates were observed. The strong influence of the mica's epitaxy on the orientation of the fibers suggested a surface-assisted assembly process. On HOPG, interactions between the alkyl chains and the graphite surface resulted in the stabilization and trapping of monomer species followed by their subsequent association into coordination polymers on the surface. Interdigitation of the alkyl chains of separate polymer strands induced lateral association of wires to form islands that grew preferentially upon drop-casting and slow evaporation. Clusters of laterally assembled wires were observed for the more mobile functionalized porphyrins bearing C 12 chains.  相似文献   

9.
3(1)-Racemically pure zinc 3(1)-hydroxy-13(1)-oxo-porphyrins (zinc methyl 17,18-dehydro-bacteriopheophorbides-d) as well as their 3(1)-demethyl form were prepared by modifying chlorophyll-a through oxidation by 2,3-dichloro-5,6-dicyano-benzoquinone. From visible, circular dichroism and infrared spectral analyses, these synthetic pigments self-aggregated in 1%(vol/vol) tetrahydrofuran and cyclohexane to give large oligomers by an intermolecular bonding of 13-C=O...H-O(3(1))...Zn(central) and pi-pi interaction of the porphyrin chromophores. The supramolecular structures are similar to those of the corresponding chlorins and a core part of extramembranous light-harvesting antennas of photosynthetic green bacteria. The 17,18-dehydrogenation of a chlorin to porphyrin moiety did not disturb its self-aggregation and the synthetic zinc porphyrins are good models for naturally occurring self-aggregative bacteriochlorophylls.  相似文献   

10.
The incorporation of symmetrically branched tridecyl ("swallowtail") substituents at the meso positions of porphyrins results in highly soluble building blocks. Synthetic routes have been investigated to obtain porphyrin building blocks bearing 1-4 swallowtail groups. Porphyrin dyads have been synthesized in which the zinc or free base (Fb) porphyrins are joined by a 4,4'-diphenylethyne linker and bear swallowtail (or n-pentyl) groups at the nonlinking meso positions. The swallowtail-substituted Zn(2)- and ZnFb-dyads are readily soluble in common organic solvents. Static absorption and fluorescence spectra and electrochemical data show that the presence of the swallowtail groups slightly raises the energy level of the filled a(2u)(pi) HOMO. EPR studies of the pi-cation radicals of the swallowtail porphyrins indicate that the torsional angle between the proton on the alkyl carbon and p-orbital on the meso carbon of the porphyrin is different from that of a porphyrin bearing linear pentyl groups. Regardless, the swallowtail substituents do not significantly affect the photophysical properties of the porphyrins or the electronic interactions between the porphyrins in the dyads. In particular, time-resolved spectroscopic studies indicate that facile excited-state energy transfer occurs in the ZnFb dyad, and EPR studies of the monocation radical of the Zn(2)-dyad show that interporphyrin ground-state hole transfer is rapid.  相似文献   

11.
A series of meso-meso-linked diporphyrins S(n) strapped with a dioxymethylene group of various length were synthesized by intramolecular Ag(I)-promoted coupling of dioxymethylene-bridged diporphyrins B(n), for n=10, 8, 6, 5, 4, 3, 2, and 1. Shortening of the strap length causes a gradual decrease in the dihedral angle between the porphyrins and increasing distortion of porphyrin ring, as suggested by MM2 calculations and (1)H NMR studies. This trend has been also suggested by X-ray crystallographic studies on the corresponding Cu(II) complexes of nonstrapped diporphyrin 2 Cu, and strapped diporphyrins S(8)Cu, S(4)Cu, and S(2)Cu. The absorption spectrum of relatively unconstrained diporphyrins S(10) strapped with a long chain exhibits split Soret bands at 414 and 447 nm and weak Q(0,0)- and prominent Q(1,0)-bands, both of which are similar to those of nonstrapped diporphyrin 2. Shortening of the strap length causes systematic changes in the absorption spectra, in which the intensities of the split Soret bands decrease, the absorption bands at about 400 nm and > 460 nm increase in intensity, and a prominent one-band feature of a Q-band is changed to a distinct two-band feature with concurrent progressive red-shifts of the lowest Q(0,0)-band. The fluorescence spectra also exhibit systematic changes, roughly reflecting the changes of the absorption spectra. The strapped diporphyrins S(n) are all chiral and have been separated into enantiomers over a chiral column. The CD spectra of the optically active S(n) display two Cotton effects at 430-450 and at about 400 nm with the opposite signs. The latter effect can be explained in terms of oblique arrangement of m( perpendicular 1) and m( perpendicular 2) dipole moments, while the former effect cannot be accounted for within a framework of the excition coupling theory. The resonance Raman (RR) spectra taken for excitation at 457.9 nm are variable among S(n), while the RR spectra taken for excitation at 488.0 nm are constant throughout the S(n) series. These photophysical properties can be explained in terms of INDO/S-SCI calculations, which have revealed charge transfer (CT) transitions accidentally located close in energy to the excitonic Soret transitions. This feature arises from a close proximity of the two porphyrins in meso-meso-linked diporphyrins. In addition to the gradual red-shift of the exciton split Soret band, the calculations predict that the high-energy absorption band at about 400 nm, the lower energy Cotton effect, and the RR spectra taken for excitation at 457.9 nm are due to the CT states which are intensified upon a decrease in the dihedral angle.  相似文献   

12.
Static and time-resolved optical measurements are reported for three cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0, 1, or 2 free base (Fb) porphyrins (denoted Zn(6), Zn(5)Fb, or Zn(4)Fb(2), respectively). The guest is a core-modified (O replacing one of the four N atoms) dipyridyl-substituted Fb porphyrin (DPFbO) that coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have a gradient of excited-state energies for excitation funneling among the weakly coupled constituents of the host to the guest. Energy transfer to the lowest-energy chromophore(s) (coordinated zinc porphyrins or Fb porphyrins) within a hexameric host occurs primarily via a through-bond (TB) mechanism, is rapid ( approximately 40 ps), and is essentially quantitative (>or=98%). Energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the guest in the Zn(6)*DPFbO complex has a yield of approximately 75%, a rate constant of approximately (0.7 ns)(-1), and significant F?rster through-space (TS) character. In the case of Zn(5)Fb*DPFbO, which has an additional TS route via the Fb porphyrin with a rate constant of approximately (20 ns)(-1), the yield of energy transfer to the guest is somewhat lower ( approximately 50%) than that for Zn(6)*DPFbO. Complex Zn(4)Fb(2)*DPFbO has an identical TS pathway via the Fb porphyrin plus an additional TS pathway involving the second Fb porphyrin (closer to the guest) with a rate constant of approximately (0.5 ns)(-1). This complex exhibits an energy-transfer yield to the guest that is significantly enhanced over that for Zn(5)Fb*DPFbO and comparable to that for Zn(6)*DPFbO. Collectively, the results for the various arrays suggest designs for similar host-guest complexes that are expected to exhibit much more efficient light harvesting and excitation trapping at the central guest chromophore.  相似文献   

13.
DNA-porphyrin conjugates were designed and synthesized for the preparation of the conformationally controlled porphyrin dimer structures constructed on a d(GCGTATACGC)2. Porphyrin derivatives were introduced to the central TATpA sequence where p represents the phosphoramidate for the attachment of the free-base porphyrin (FbP) and zinc-coordinated porphyrin (ZnP), which allows contact of the two porphyrins in the minor groove. The porphyrin dimers were characterized using CD, UV-vis, steady-state, and time-resolved fluorescence spectroscopies, indicating that the porphyrins form face-to-face conformations. Also the co-facial conformation was confirmed by comparison with spectra of the non-self-complementary duplex containing one porphyrin moiety. Introduction of zinc into porphyrin moiety destabilized the duplex formation. Two diastereomers showed different thermal stabilities and affected the conformations of porphyrin dimers. The temperature-dependent assembly and the conformational change of the porphyrin dimer on the duplex DNA were observed in the UV-vis spectra, indicating that the dynamic movement of the porphyrin dimer occurs on the duplex. The results indicate that the porphyrin dimers of DNA-FbP conjugates are overlapped clockwise and are located in the minor groove of the usual B-form DNA backbone. The interaction and conformation of two porphyrin moieties are controlled by the following three factors: (1) temperature change during and after formation of the duplex porphyrins at lower temperature; (2) diastereochemistry of the phosphoramidates where porphyrins are connected via a linker; and (3) zinc ion coordination that destabilizes the interaction of porphyrins as well duplex formation.  相似文献   

14.
STM实验发现长链烷烃分子能够改善多种有机分子的吸附性能,本文利用CVFF力场对长链烷烃与石墨吸附体系进行了分子力学模拟,用半经验ZINDO/1,AM1方法对烷基取代酞菁和卟啉的STM形貌反差机制进行了研究。理论计算表明,长链烷烃分子与基底的吸附作用增强了分子的吸附稳定性,而烷烃分子间的二维结晶作用使取代酞菁和卟啉分子形成密排的二维有序结构。前线轨道电子密度和STM实验结果比较证明,分子核部分的电子性质和烷基部分的几何结构决定了取代酞菁和卟啉分子的STM形貌反差。  相似文献   

15.
A series of neutral porphyrin-containing catenanes has been synthesised, consisting of a zinc porphyrin strapped by a polyethylene glycol chain containing four or six ethylenoxy-units and incorporating a central naphthoquinol unit, interlinked with a naphthalene diimide macrocycle. The napthalene diimide precursor units exhibit only weak binding with the strapped porphyrins (Ka between 8 and 0.02 M(-1)), but good yields of the catenanes were obtained by Glaser coupling of the alkynyl napthalene diimide precursors in the presence of the porphyrins. Structures and solution conformations were determined by mass spectral and detailed 1H NMR studies. For the longer strapped porphyrins, the diimide macrocycle rotates around the central naphthoquinol unit at 420-450 times per second, while rotation is virtually prevented in the tighter strapped derivatives. A second dynamic process occurring in both sets of catenanes and described as 'yawing' leads to inequivalence in the naphthalene moieties. UV-Visible spectra indicate charge transfer interactions and electronic communication between the two components of the catenane.  相似文献   

16.
具有不同取代链长的卟啉衍生物LB膜的结构研究   总被引:3,自引:0,他引:3  
本文研究了三种羧酸取代的四苯基卟啉衍生物在空气/Cd^2^+水溶液界面上所形成的单层膜及LB膜。这三种卟啉衍生物中, 一种没有脂链, 另外两种具有不同长度的脂链。由π-A等温线得到的平均表观分子面积相差很大。紫外-可见光谱表明, LB膜中卟啉的Soret吸收带相对于溶液的吸收均红移, 但红移程度不同。LB膜的偏振紫外-可见光谱表明, LB膜中三种卟啉衍生物的卟啉环具有基本一致的取向。运用亚相降低法得到了三种卟啉衍生物单层LB膜, 其紫外-可见光谱与用垂直提拉法得到的LB膜的紫外-可见光谱具有一致的特征。这些结果表明: 卟啉衍生物有无取代链及取代链长的不同对平均表观分子面积的大小和膜中环间的距离有影响, 但对环的取向没有影响。环的取向由环本身及环上的亲水取代基来确定。气/液界面上三种卟啉衍生物的单层膜中环也具有一致的取向, 且与LB膜中环的取向相差不大。提拉不会对膜中环的取向及膜的结构造成大的改变。  相似文献   

17.
Quadruply-hydrogen-bonded porphyrin homodimer Zn1.Zn1 has been designed, assembled, and evaluated as a supramolecular cleft-featured receptor for its ability to bind dipyridyl guests in chloroform-d. Monomer Zn1 consists of a 2-ureidopyrimidin-4(1H)-one unit, which was initially reported by Meijer et al., and a zinc porphyrin unit. The zinc porphyrin is strapped with an additional aliphatic chain for controlling the atropisomerization of porphyrin. The 2-ureidopyrimidin-4(1H)-one unit dimerizes exclusively in chloroform even at the dilute concentration of 10(-)(4) M, while the two "strapped" zinc porphyrin units of the homodimer provide additional binding sites for selective guest recognition. (1)H NMR studies indicate that the new homodimer Zn1.Zn1 adopts an S-type conformation due to strong donor-acceptor interaction between the electron-rich porphyrin units and the electron-deficient 2-ureidopyrimidin-4(1H)-one unit. (1)H NMR, UV-vis, and vapor pressure osmometry investigations reveal that Zn1.Zn1 could function as a new generation of assembled supramolecular cleft, to be able to not only efficiently bind linear dipyridyl molecules 14-17, resulting in the formation of stable termolecular complexes, with K(aasoc) values ranging from 3.8 x 10(6) to 8.9 x 10(7) M(-)(1), but also strongly complex a hydrogen-bond-assembled [2]rotaxane, 18, which consists of a rigid fumaramide thread and a pyridine-incorporated tetraamide cyclophane, with K(aasoc) = 1.2 x 10(4) M(-)(1). (1)H NMR competition experiments reveal that complexation to the dipyriyl guests also promotes the stability of the quadruply-hydrogen-bonded dimeric receptor.  相似文献   

18.
A series of multithiol-functionalized zinc porphyrins has been prepared and characterized as self-assembled monolayers (SAMs) on Au. The molecules, designated ZnPS(n) (n = 1-4), contain from one to four [(S-acetylthio)methyl]phenylethynylphenyl groups appended to the meso-position of the porphyrin; the other meso-substituents are phenyl groups. For the dithiol-functionalized molecules, both the cis- and the trans-appended structures were examined. The ZnPS(n) SAMs were investigated using X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and various electrochemical methods. The studies reveal the following characteristics of the ZnPS(n) SAMs. (1) The ZnPS(n) molecules bind to the Au surface via a single thiol regardless of the number of thiol appendages that are available per molecular unit. (2) The porphyrins in the ZnPS(3) and ZnPS(4) SAMs bind to the surface in a more upright orientation than the porphyrins in the ZnPS(1), cis-ZnPS(2), and trans-ZnPS(2) SAMs. The porphyrins in the ZnPS(3) and ZnPS(4) SAMs are also more densely packed than those in the cis-ZnPS(2) and trans-ZnPS(2) SAMs. The packing density of the ZnPS(3) and ZnPS(4) SAMs is similar to that of the ZnPS(1) SAMs, despite the larger size of the molecules in the former SAMs. (3) The thermodynamics and kinetics of electron transfer are generally similar for all of the ZnPS(n) SAMs. The general similarities in the electron-transfer characteristics for all of the SAMs are attributed to the similar binding motif.  相似文献   

19.
Three double-decker complexes of cerium(IV) were synthesized, which commonly have a 5,10,15,20-tetrakis(4-docosyloxyphenyl)porphyrin (C22OPP) moiety as one of the two tetrapyrrole rings. The three complexes-Ce(Pc)(C22OPP), Ce(C22OPP)2, and Ce(BPEPP)(C22OPP)-are distinguished by the other rings, which are Pc (=phthalocyanine), C22OPP, and BPEPP (=5,15-bis[4-(phenylethynyl)phenyl]porphyrin), respectively. The rate of inter-ring rotation of Ce(BPEPP)(C22OPP) was estimated to be approximately 3 s(-1) in solution at room temperature. These complexes assemble into ordered arrays at the interface of 1-phenyloctane and the highly oriented pyrolytic graphite surface, owing to the affinity of the long alkyl chains toward the surface, as revealed by means of scanning tunneling microscopy (STM) with molecular resolution. The shape of the upper ring is reflected in the STM image. Thus, Ce(Pc)(C22OPP), Ce(C22OPP)2, and Ce(BPEPP)(C22OPP) were observed as circular, square, and elliptic features, respectively. Possible molecular arrangements in the array of Ce(BPEPP)(C22OPP) are proposed by comparing STM images and molecular models. In the mixed arrays of Ce(BPEPP)(C22OPP) and H2(C22OPP), the double-decker complexes were distinguished by brighter features. Competitive adsorption experiments showed that the adsorption of Ce(BPEPP)(C22OPP) is less favorable than that of H2(C22OPP) by DeltaG(app) = 2.7 kJ mol(-1). Ce(BPEPP)(C22OPP) molecules appeared elliptic when placed within their own row, while they appeared isotropic when flanked by H2(C22OPP) molecules. Implications of the differences in the observed shapes to the inter-ring rotation are discussed.  相似文献   

20.
The synthesis of π-extended porphyrins containing anthracenyl moieties still represents an important challenge. Here, we report on the synthesis of a series of unsubstituted naphthyl-, pyrenyl- and anthracenyl-fused zinc porphyrin derivatives. To this aim, meso-substitued porphyrins are synthesized and the fusion of the PAHs (Polycyclic Aromatic Hydrocarbon) on the β-positions are performed through thermally induced dehydro-aromatization. The fused zinc-porphyrin derivatives are fully characterized and their optical absorption and photoluminescence properties are reported. We also demonstrate that zinc can be removed from the porphyrin core, giving rise to pure C, H, N materials. This work constitutes the first step towards the synthesis of the fully-fused tetra-anthracenylporphyrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号