首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
In this work, accurate solutions to linear and nonlinear diffusion equations were introduced. A combination of a sixth-order compact finite difference scheme in space and a low-storage third-order total variation diminishing Runge-Kutta scheme in time have been used for treatment of these equations. The computed results with the use of this technique have been compared with the exact solution to show the accuracy of it. Here, the approximate solution to the diffusion equations has been obtained easily and elegantly with neither transforming nor linearizing the equation. The present method is seen to be a very good alternative method to some existing techniques for realistic problems.  相似文献   

2.
This paper studies a meshfree technique for the numerical solution of the two-dimensional reaction–diffusion Brusselator system along with Dirichlet and Neumann boundary conditions. Combination of collocation method using the radial basis functions (RBFs) with first order accurate forward difference approximation is employed for obtaining meshfree solution of the problem. Different types of RBFs are used for this purpose. The method is shown to converge to the only equilibrium point of the system. Performance of the proposed method is successfully tested in terms of various error norms. In the case of non-availability of exact solution, performance of the new method is compared with the results obtained from the existing methods [7] and [8]. The elementary stability analysis is established theoretically and is also supported by numerical results.  相似文献   

3.
A numerical method for solving the coupled Korteweg‐de Vries (CKdV) equation based on the collocation method with quintic B‐spline finite elements is set up to simulate the solution of CKdV equation. Invariants and error norms are studied wherever possible to determine the conservation properties of the algorithm. Simulation of single soliton, interaction of two solitons, and birth of solitons are presented. A linear stability analysis shows the scheme to be unconditionally stable. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

4.
The aim of this study is to obtain numerical behavior of a one‐dimensional modified Burgers' equation using cubic B‐spline collocation finite element method after splitting the equation with Strang splitting technique. Moreover, the Ext4 and Ext6 methods based on Strang splitting and derived from extrapolation have also been applied to the equation. To observe how good and effective this technique is, we have used the well‐known the error norms L2 and L in the literature and compared them with previous studies. In addition, the von Neumann (Fourier series) method has been applied after the nonlinear term has been linearized to investigate the stability of the method.  相似文献   

5.
In this report, we give a semi‐discrete defect correction finite element method for the unsteady incompressible magnetohydrodynamics equations. The defect correction method is an iterative improvement technique for increasing the accuracy of a numerical solution without applying a grid refinement. Firstly, the nonlinear magnetohydrodynamics equations is solved with an artificial viscosity term. Then, the numerical solutions are improved on the same grid by a linearized defect‐correction technique. Then, we give the numerical analysis including stability analysis and error analysis. The numerical analysis proves that our method is stable and has an optimal convergence rate. In order to show the effect of our method, some numerical results are shown. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a numerical solution of fractional partial differential equations (FPDEs) for electromagnetic waves in dielectric media will be discussed. For the solution of FPDEs, we developed a numerical collocation method using an algorithm based on two‐dimensional shifted Legendre polynomials approximation, which is proposed for electromagnetic waves in dielectric media. By implementing the partial Riemann–Liouville fractional derivative operators, two‐dimensional shifted Legendre polynomials approximation and its operational matrix along with collocation method are used to convert FPDEs first into weakly singular fractional partial integro‐differential equations and then converted weakly singular fractional partial integro‐differential equations into system of algebraic equation. Some results concerning the convergence analysis and error analysis are obtained. Illustrative examples are included to demonstrate the validity and applicability of the technique. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper we present a certain collocation method for the numerical solution of a class of boundary integral equations of the first kind with logarithmic kernel as principle part. The transformation of the boundary value problem into boundary singular integral equation of the first kind via single-layer potential is discussed. A discretization and error representation for the numerical solution of boundary integral equations has been given. Quadrature formulae have been proposed and the error arising due to the quadrature formulae used has been estimated. The convergence of the solution with respect to the proposed numerical algorithm is shown and finally some numerical results have been presented.  相似文献   

8.
In this study, a fully discrete defect correction finite element method for the unsteady incompressible Magnetohydrodynamics (MHD) equations, which is leaded by combining the Back Euler time discretization with the two-step defect correction in space, is presented. It is a continuous work of our formal paper [Math Method Appl Sci. 2017. DOI:10.1002/mma.4296]. The defect correction method is an iterative improvement technique for increasing the accuracy of a numerical solution without applying a grid refinement. Firstly, the nonlinear MHD equation is solved with an artificial viscosity term. Then, the numerical solutions are improved on the same grid by a linearized defect-correction technique. Then, we introduce the numerical analysis including stability analysis and error analysis. The numerical analysis proves that our method is stable and has an optimal convergence rate. Some numerical results [see Math Method Appl Sci. 2017. DOI:10.1002/mma.4296] show that this method is highly efficient for the unsteady incompressible MHD problems.  相似文献   

9.
In tube hydroforming, the inverse finite element method (IFEM) has been used for estimating the initial length of tube, axial feeding and fluid pressure. The already developed IFEM algorithm used in this work is based on the total deformation theory of plasticity. Although the nature of tube hydroforming is three-dimensional deformation, in this paper a modeling technique has been used to perform the computations in two-dimensional space. Therefore, compared with conventional forward finite element methods, the present computations are quite fast with no trial and error process. In addition, the solution provides all the components of strain. Using the forming limit diagram (FLD), the components of strain can lead us to measure the potentials for failures or wrinkles during the deformation. The results of analysis for free bulging and square bulging have been compared with some published experimental data and the results obtained by conventional commercial software.  相似文献   

10.
In this paper, a projected gradient trust region algorithm for solving nonlinear equality systems with convex constraints is considered. The global convergence results are developed in a very general setting of computing trial directions by this method combining with the line search technique. Close to the solution set this method is locally Q-superlinearly convergent under an error bound assumption which is much weaker than the standard nonsingularity condition.  相似文献   

11.
The nonlinear complementarity problem can be reformulated as a nonlinear programming. For solving nonlinear programming, sequential quadratic programming (SQP) type method is very effective. Moreover, filter method, for its good numerical results, are extensively studied to handle nonlinear programming problems recently. In this paper, a modified quadratic subproblem is proposed. Based on it, we employ filter technique to tackle nonlinear complementarity problem. This method has no demand on initial point. The restoration phase, which is always used in traditional filter method, is not needed. Global convergence results of the proposed algorithm are established under suitable conditions. Some numerical results are reported in this paper.  相似文献   

12.
A Fourier-Chebyshev spectral method is proposed in this paper for solving the cavitation problem in nonlinear elasticity. The interpolation error for the cavitation solution is analyzed, the elastic energy error estimate for the discrete cavitation solution is obtained, and the convergence of the method is proved. An algorithm combined a gradient type method with a damped quasi-Newton method is applied to solve the discretized nonlinear equilibrium equations. Numerical experiments show that the Fourier-Chebyshev spectral method is efficient and capable of producing accurate numerical cavitation solutions.  相似文献   

13.
In this paper, we construct a spectral-finite element scheme for solving semi-periodical two-dimensional vorticity equations. The error between the genuine solution and approximate solution is estimated strictly. The numerical results show the advantages of such a method. The technique used in this paper can be easily generalized to three-dimensional problems.  相似文献   

14.
A proper orthogonal decomposition (POD) technique is used to reduce the finite volume element (FVE) method for two-dimensional (2D) viscoelastic equations. A reduced-order fully discrete FVE algorithm with fewer degrees of freedom and sufficiently high accuracy based on POD method is established. The error estimates of the reduced-order fully discrete FVE solutions and the implementation for solving the reduced-order fully discrete FVE algorithm are provided. Some numerical examples are used to illustrate that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order fully discrete FVE algorithm is one of the most effective numerical methods by comparing with corresponding numerical results of finite element formulation and finite difference scheme and that the reduced-order fully discrete FVE algorithm based on POD method is feasible and efficient for solving 2D viscoelastic equations.  相似文献   

15.
This article discusses multiscale analysis and numerical algorithm for the nonstationary integrated heat transfer problem with rapidly oscillating coefficients. The multiscale asymptotic expansion of the solution for this kind of problems is presented first. Then, error estimates of the multiscale approximate solution are derived, and a numerical algorithm based on the multiscale method for temperature field is introduced. Finally, using some numerical models, we verify the validity and relevancy of the proposed algorithm. The numerical results show that the algorithm is effective to predict the heat transfer performance of porous materials, and support the convergence theorem reported in this article. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 510–530, 2016  相似文献   

16.
The main aim of the present work is to propose a new and simple algorithm for space-fractional telegraph equation, namely new fractional homotopy analysis transform method (HATM). The fractional homotopy analysis transform method is an innovative adjustment in Laplace transform algorithm (LTA) and makes the calculation much simpler. The proposed technique solves the nonlinear problems without using Adomian polynomials and He’s polynomials which can be considered as a clear advantage of this new algorithm over decomposition and the homotopy perturbation transform method (HPTM). The beauty of the paper is error analysis which shows that our solution obtained by proposed method converges very rapidly to the known exact solution. The numerical solutions obtained by proposed method indicate that the approach is easy to implement and computationally very attractive. Finally, several numerical examples are given to illustrate the accuracy and stability of this method.  相似文献   

17.
In this paper, we present the approximate solution of damped Boussinesq equation using extended Raviart–Thomas mixed finite element method. In this method, the numerical solution of this equation is obtained using triangular meshes. Also, for discretization in time direction, we use an implicit finite difference scheme. In addition, error estimation and stability analysis of both methods are shown. Finally, some numerical examples are considered to confirm the theoretical results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, an algorithm is proposed for the solution of second-order boundary value problems with two-point boundary conditions. The Green’s function method is applied first to transform the ordinary differential equation into an equivalent integral one, which has already satisfied the boundary conditions. And then, the homotopy perturbation method is used to the resulting equation to construct the numerical solution for such problems. Numerical examples demonstrate the efficiency and reliability of the algorithm developed, it is quite accurate and readily implemented for both linear and nonlinear differential equations with homogeneous and nonhomogeneous boundary conditions. Furthermore, the lower order approximation is of higher accuracy for most cases. Some other extended applications of this algorithm are also exhibited.  相似文献   

19.
In this paper, a numerical solution of the generalized Burgers–Huxley equation is presented. This is the application of spectral collocation method. To reduce roundoff error in this method we use Darvishi’s preconditionings. The numerical results obtained by this method have been compared with the exact solution. It can be seen that they are in a good agreement with each other, because errors are very small and figures of exact and numerical solutions are very similar.  相似文献   

20.
A finite volume method on general surfaces and its error estimates   总被引:1,自引:0,他引:1  
In this paper, we study a finite volume method and its error estimates for the numerical solution of some model second order elliptic partial differential equations defined on a smooth surface. The discretization is defined via a surface mesh consisting of piecewise planar triangles and piecewise polygons. The optimal error estimates of the approximate solution are proved in both the H1 and L2 norms which are of first order and second order respectively under mesh regularity assumptions. Some numerical tests are also carried out to experimentally verify our theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号