首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At present, uncooled thermal detector focal plane arrays are successfully used in staring thermal imagers. However, the performance of thermal detectors is modest, they suffer from slow response and they are not very useful in applications requiring multispectral detection. Infrared (IR) photon detectors are typically operated at cryogenic temperatures to decrease the noise of the detector arising from various mechanisms associated with the narrow band gap. There are considerable efforts to decrease system cost, size, weight, and power consumption to increase the operating temperature in so-called high-operating-temperature (HOT) detectors. Initial efforts were concentrated on photoconductors and photoelectromagnetic detectors. Next, several ways to achieve HOT detector operation have been elaborated including non-equilibrium detector design with Auger suppression and optical immersion. Recently, a new strategies used to achieve HOT detectors include barrier structures such as nBn, material improvement to lower generation-recombination leakage mechanisms, alternate materials such as superlattices and cascade infrared devices. Another method to reduce detector’s dark current is reducing volume of detector material via a concept of photon trapping detector. In this paper, a number of concepts to improve performance of photon detectors operating at near room temperature are presented. Mostly three types of detector materials are considered — HgCdTe and InAsSb ternary alloys, and type-II InAs/GaSb superlattice. Recently, advanced heterojunction photovoltaic detectors have been developed. Novel HOT detector designs, so called interband cascade infrared detectors, have emerged as competitors of HgCdTe photodetectors.  相似文献   

2.
A GaAs/AlGaAs heterojunction is used as a spin-split-off band IR detector operating at or around room temperature. This detector structure followed a similar layer architecture to the quantum well IR photo detectors (QWIP) and Heterojunction Interfacial Work function Internal Photoemission (HEIWIP) detectors. Compared to QWIPs, the emitter layer thickness is increased to avoid confinement. Unlike either the QWIPs or HEIWIPs, these detectors will have two energy gaps (barriers) to obtain the wavelength threshold which could be used to design detectors either for optimum operating temperature or optimum responsivity. The free carrier energy gap is determined by the Al fraction and the spin-split-off transition energy provides another handle on controlling the effective threshold of the detector. Unlike QWIPs, these will also detect normal incidence radiation. A preliminary detector showed a peak responsivity of 0.29 mA/W at 2.5 μm at room temperature.  相似文献   

3.
Space qualified InGaAs solid-state array detectors, covering the near-infrared 1–2.4 μm wavelength range, have been developed for application in space-based spectroscopy of the Earth atmosphere. The SCIAMACHY atmospheric chemistry instrument on the ESA ENVISAT satellite (2002–2005) will be equipped with a series of these novel detectors. Detectors are arranged in linear arrays of 1024 pixels of 25×500 μm2 dimension and meet requirements on modestly low operating temperature (150 K) and low levels of dark current and noise. In this paper the underlying physics of dark current and noise of the detector system is studied on the basis of a theoretical model in combination with measurements. At 2.4 μm wavelength the dark-current performance achieved is 20–100 fA at an operating temperature of 150 K and a bias voltage of −2 mV. This corresponds to a figure of merit for detector resistance R0 times detector pixel area A of R0A=2.5–12.5 MΩ cm2. This result has required the development of a customised multiplexer for parallel detector read-out at near-zero bias voltage. Further reduction of the operating temperature will not result in lowering the dark current and noise of the InGaAs detectors which are shown to be limited by tunnelling current. A route to future improvement is discussed.  相似文献   

4.
The rapid development of superconducting nanowire single-photon detectors over the past decade has led to numerous advances in quantum information technology. The record for the best system detection efficiency at an incident photon wavelength of 1550 nm is 93%. This performance was attained from a superconducting nanowire single-photon detector made of amorphous WSi; such detectors are usually operated at sub-Kelvin temperatures. In this study, we first demonstrate superconducting nanowire single-photon detectors made of polycrystalline NbN with system detection efficiency of 90.2% for 1550-nm-wavelength photons at 2.1 K, accessible with a compact cryocooler. The system detection efficiency saturated at 92.1% when the temperature was lowered to 1.8 K. We expect the results lighten the practical and high performance superconducting nanowire single-photon detectors to quantum information and other high-end applications.  相似文献   

5.
The utmost limit performance of interband cascade detectors optimized for the longwave range of infrared radiation is investigated in this work. Currently, materials from the III–V group are characterized by short carrier lifetimes limited by Shockley-Read-Hall generation and recombination processes. The maximum carrier lifetime values reported at 77 K for the type-II superlattices InAs/GaSb and InAs/InAsSb in a longwave range correspond to ~200 and ~400 ns. We estimated theoretical detectivity of interband cascade detectors assuming above carrier lifetimes and a value of ~1–50 μs reported for a well-known HgCdTe material. It has been shown that for room temperature the limit value of detctivity is of ~3–4×1010 cmHz1/2/W for the optimized detector operating at the wavelength range ~10 μm could be reached.  相似文献   

6.
A multi-functional single-photon detector was demonstrated to resolve photon states by multiple superconductor single photon detectors (SSPDs) system with improved readout settings. The photon number and space distribution were resolved simultaneously by the presented system, which inherits the merits of SSPD, such as wide-response band, high repetition rate and working stability. Experimentally, four photons were resolved and the photon distribution over three pixels was figured out according to the amplitudes of output pulses at the telecommunication wavelength. The extension of this proposal to incorporate more elements for resolving more photons and revealing photons spatial distribution over larger scale is also discussed.  相似文献   

7.
A study of intersubband transitions in quantum well infrared detectors working at high temperatures has been reported. This study allows a greater tunability in the device designs, with the ability to control the peak wavelength, the absorption coefficient, the dark current, the quantum efficiency and the detectivity of the modeled structure operating around 3.3 μm wavelength. The detection energy and absorption coefficient dependences with an applied electric field are given. Then, the electro-optic performances of the modeled mid-infrared detector are estimated, the dark current dependence with the applied voltage and temperature as well as the quantum efficiency and the detectivity are investigated and discussed. High detectivities were found at high temperatures revealing the good performances of the designed photodetector, especially at 3.3 μm wavelength.  相似文献   

8.
For over 27 years, SCD has been manufacturing and developing a wide range of high performance infrared detectors, designed to operate in either the mid-wave (MWIR) or the long-wave (LWIR) atmospheric windows. These detectors have been integrated successfully into many different types of system including missile seekers, time delay integration scanning systems, hand-held cameras, missile warning systems and many others. SCD’s technology for the MWIR wavelength range is based on its well established 2D arrays of InSb photodiodes. The arrays are flip-chip bonded to SCD’s analogue or digital signal processors, all of which have been designed in-house. The 2D focal plane array (FPA) detectors have a format of 320×256 elements for a 30-μm pitch and 480×384 or 640×512 elements for a 20-μm pitch. Typical operating temperatures are around 77–85 K. Five years ago SCD began to develop a new generation of MWIR detectors based on the epitaxial growth of antimonide based compound semiconductors (ABCS). This ABCS technology allows band-gap engineering of the detection material which enables higher operating temperatures and multi-spectral detection. This year SCD presented its first prototype FPA from this program, an InAlSb based detector operating at a temperature of 100 K. By the end of this year SCD will introduce the first prototype MWIR detector with a 640×512 element format and a pitch of 15 μm. For the LWIR wavelength range SCD manufactures both linear Hg1−xCdxTe (MCT) detectors with a line of 250 elements and time delay and integration (TDI) detectors with formats of 288×4 and 480×6. Recently, SCD has demonstrated its first prototype uncooled detector which is based on VOx technology and which has a format of 384×288 elements, a pitch of 25 μm, and a typical NETD of 50 mK at F/1. In this paper, we describe the present technologies and products of SCD and the future evolution of our detectors for the MWIR and LWIR detection. The paper presented there appears in Infrared Photoelectronics, edited by Antoni Rogalski, Eustace L. Dereniak, Fiodor F. Sizov, Proc. SPIE Vol. 5957, 59570S (2005).  相似文献   

9.
Quantum dot structures designed for multi-color infrared detection and high temperature (or room temperature) operation are demonstrated. A novel approach, tunneling quantum dot (T-QD), was successfully demonstrated with a detector that can be operated at room temperature due to the reduction of the dark current by blocking barriers incorporated into the structure. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color tunneling-quantum dot infrared photodetector (T-QDIP) with photoresponse peaks at 6 μm and 17 μm operating at room temperature will be discussed. Furthermore, the idea can be used to develop terahertz T-QD detectors operating at high temperatures. Successful results obtained for a T-QDIP designed for THz operations are presented. Another approach, bi-layer quantum dot, uses two layers of InAs quantum dots (QDs) with different sizes separated by a thin GaAs layer. The detector response was observed at three distinct wavelengths in short-, mid-, and far-infrared regions (5.6, 8.0, and 23.0 μm). Based on theoretical calculations, photoluminescence and infrared spectral measurements, the 5.6 and 23.0 μm peaks are connected to the states in smaller QDs in the structure. The narrow peaks emphasize the uniform size distribution of QDs grown by molecular beam epitaxy. These detectors can be employed in numerous applications such as environmental monitoring, spectroscopy, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.  相似文献   

10.
HgCdTe remains the most important material for infrared (IR) photodetectors despite numerous attempts to replace it with alternative materials such as closely related mercury alloys (HgZnTe, HgMnTe), Schottky barriers on silicon, SiGe heterojunctions, GaAs/AlGaAs multiple quantum wells, InAs/GaInSb strained layer superlattices, high temperature superconductors and especially two types of thermal detectors: pyroelectric detectors and silicon bolometers. It is interesting, however, that none of these competitors can compete in terms of fundamental properties. In addition, HgCdTe exhibits nearly constant lattice parameter which is of extreme importance for new devices based on complex heterostructures. The development of sophisticated controllable vapour phase epitaxial growth methods, such as MBE and MOCVD, has allowed fabrication of almost ideally designed heterojunction photodiodes. In this paper, examples of novel devices based on heterostructures operating in the long wavelength, middle wavelength and short wavelength spectral ranges are presented. Recently, more interest has been focused on p–n junction heterostructures. As infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. HgCdTe heterojunction detectors offer wavelength flexibility from medium wavelength to very long wavelength and multicolour capability in these regions. Recent progress in two-colour HgCdTe detectors is also reviewed.  相似文献   

11.
超导转变边沿单光子探测器原理与研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
张青雅  董文慧  何根芳  李铁夫  刘建设  陈炜 《物理学报》2014,63(20):200303-200303
量子信息技术近十多年来的快速发展对单光子探测器的性能提出了更高的要求,高性能单光子探测器也因此受到了更多的关注.与传统的单光子探测器相比,超导转变边沿(TES)单光子探测器在探测效率、能量分辨、光子数分辨和暗计数等方面具有突出优势.目前,超导TES单光子探测器已经被成功地应用在量子光学实验和量子密钥分配系统中,未来在量子信息技术等研究领域具有更广泛的应用.本文从超导TES单光子探测器的工作原理、制备流程、测试系统、主要性能指标以及研究现状和进展等方面对该探测器技术进行简要综述.  相似文献   

12.
This paper overviews the history of infrared detector materials starting with Herschel??s experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940??s. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ??3 ??m. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called ??dual-use technology applications.?? One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.  相似文献   

13.
The detection of far-infrared (far-IR) and sub-mm-wave radiation is resistant to the commonly employed techniques in the neighbouring microwave and IR frequency bands. In this wavelength detection range the use of solid state detectors has been hampered for the reasons of transit time of charge carriers being larger than the time of one oscillation period of radiation. Also the energy of radiation quanta is substantially smaller than the thermal energy at room temperature and even liquid nitrogen temperature. The realization of terahertz (THz) emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. Development of semiconductor focal plane arrays started in seventies last century and has revolutionized imaging systems in the next decades. This paper presents progress in far-IR and sub-mm-wave semiconductor detector technology of focal plane arrays during the past twenty years. Special attention is given on recent progress in the detector technologies for real-time uncooled THz focal plane arrays such as Schottky barrier arrays, field-effect transistor detectors, and microbolometers. Also cryogenically cooled silicon and germanium extrinsic photoconductor arrays, and semiconductor bolometer arrays are considered.  相似文献   

14.
《Opto-Electronics Review》2019,27(3):282-290
We present an overview of our technological achievements in the implementation of detector structures based on mercury cadmium telluride (MCT) heterostructures and nanostructures for IR and THz spectral ranges. We use a special MBE design set for the epitaxial layer growth on (013) GaAs substrates with ZnTe and CdTe buffer layers up to 3” in diameter with the precise ellipsometric monitoring in situ. The growth of MCT alloy heterostructures with the optimal composition distribution throughout the thickness allows for the realization of different types of many-layered heterostructures and quantum wells to prepare the material for fabricating single- or dual-band IR and THz detectors.We also present the two-color broad-band bolometric detectors based on the epitaxial MCT layers that are sensitive in 150–300-GHz subterahertz and infrared ranges from 3 to 10 μm, which operate at the ambient or liquid nitrogen temperatures as photoconductors, as well as the detectors based on planar HgTe quantum wells. The design and dimensions of THz detector antennas are optimized for reasonable detector sensitivity values. A special diffraction limited optical system for the detector testing was designed and manufactured. We represent here the THz images of objects hidden behind a plasterboard or foam plastic packaging, obtained at the radiation frequencies of 70, 140, and 275 GHz, respectively.  相似文献   

15.
L. Ma  O. Slattery  X. Tang 《Laser Physics》2010,20(5):1244-1250
Quantum information systems are commonly operated in conventional communication bands (1310 and 1550 nm) over an optical fiber to take advantage of low transmission loss. However, the detection and spectral measurement of single photons in these communication bands are limited due to high noise and low sensitivity of single photon detectors in the wavelength ranges. To demonstrate high efficiency detection and high sensitivity spectral measurement, we have implemented a single photon detector and a spectrometer based on frequency up-conversion technology. This detector and spectrometer uses a 5-cm periodically poled lithium niobate (PPLN) waveguide and a tunable pump laser around 1550 nm, to convert signal photons around 1310 to 710 nm. The converted photons are then detected by a silicon-based avalanche photodiode (APD). The overall detection efficiency of the single photon detector is as high as 32%, which is three times higher than commercial InGaAs APDs. The sensitivity of the spectrometer is measured to be −126 dBm, which is at least three orders-of-magnitude better than any commercial optical spectrum analyzer in this wavelength range.  相似文献   

16.
In this paper, we give an overview of quantum cascade detector technology for the near- and mid-infrared wavelength range. Thanks to their photovoltaic operating principle, the most advanced quantum cascade detectors offer great opportunities in terms of high detection speed, reliable room temperature operation, and excellent Johnson noise limited detectivity. Besides some important features dealing with their fabrication and their general characteristics, we will also briefly present some possibilities for performance improvement. Elementary theoretical considerations adopted from photoconductive detectors confirm that optimization of such devices always involves various trade-offs.  相似文献   

17.
利用参量下转换制备相关光子实现对各类探测器的量子效率的定标,是近年来兴起的新型定标技术。由于参量下转换的光子转换效率低,探测器输出信号信噪比小。采用短波激光器泵浦PPLN周期极化性晶体,可获得较大功率的参量光。分析了泵浦光在PPLN晶体端面的入射角对参量光的转换效率、空间分布、参量带宽及晶体周期的影响,并进行了数值模拟。分析发现当泵浦光正入射晶体端面时,参量光功率转换大,带宽小,发散角大;随着泵浦光入射角度逐渐增大,参量下转换的转换效率降低,相关光子的带宽变小,发散角变小且参量光的中心波长的空间位置会发生相对偏移。该研究结果可为相关光子探测、模拟探测器量子效率的高精度定标提供理论依据。  相似文献   

18.
《Infrared physics》1992,33(6):487-491
A lightly doped GaAs/(Ga, Al)As multiquantum-well sample is shown to be a fast detector of 2–5-ns wide far-infrared (FIR) pulses in the wavelength range from 100 to 500 μm. The conditions for optimum bias, sign of the photosignal, and non-linearity in the low-temperature current-voltage curve suggest that the detection mechanism is hot-electron photoconductivity. The responsivity is optimum near liquid-helium temperature where the detector response time is 2 ns.Furthermore, we observe for the first time in quantum wells, long-wavelength IR detection at temperatures above 77 K with a superradiant pulse-width-limited response time of < 1 ns.  相似文献   

19.
The work describes multiband photon detectors based on semiconductor micro-and nano-structures. The devices considered include quantum dot, homojunction, and heterojunction structures. In the quantum dot structures, transitions are from one state to another, while free carrier absorption and internal photoemission play the dominant role in homo or heterojunction detectors. Quantum dots-in-a-well (DWELL) detectors can tailor the response wavelength by varying the size of the well. A tunnelling quantum dot infrared photodetector (T-QDIP) could operate at room temperature by blocking the dark current except in the case of resonance. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunnelling, while the dark current is blocked by AlGaAs/InGaAs tunnelling barriers placed in the structure. A two-colour infrared detector with photoresponse peaks at ∼6 and ∼17 μm at room temperature will be discussed. A homojunction or heterojunction interfacial workfunction internal photoemission (HIWIP or HEIWIP) infrared detector, formed by a doped emitter layer, and an intrinsic layer acting as the barrier followed by another highly doped contact layer, can detect near infrared (NIR) photons due to interband transitions and mid/far infrared (MIR/FIR) radiation due to intraband transitions. The threshold wavelength of the interband response depends on the band gap of the barrier material, and the MIR/FIR response due to intraband transitions can be tailored by adjusting the band offset between the emitter and the barrier. GaAs/AlGaAs will provide NIR and MIR/FIR dual band response, and with GaN/AlGaN structures the detection capability can be extended into the ultraviolet region. These detectors are useful in numerous applications such as environmental monitoring, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing. The paper presented there appears in Infrared Photoelectronics, edited by Antoni Rogalski, Eustace L. Dereniak, Fiodor F. Sizov, Proc. SPIE Vol. 5957, 59570W (2005).  相似文献   

20.
The results of computer simulation of heat propagation processes in the three-layer detection pixel with the superconducting layers of thermoelectric detector after the absorption of single photons energy of 1–1000 eV are presented. We consider the different geometries of the detection pixel consisting of CeB6 or (La,Ce)B6 thermoelectric sensor, absorber and heat sink of Nb, Pb or YBCO superconductors. The computations based on the heat conduction equation from the limited volume are carried out by the three-dimensional matrix method for differential equations. It is shown that by changing the materials and dimension of the detection pixel elements, as well as the operating temperature of the detector enables one to obtain the detector to register the photons within the given spectral range, required energy resolution, and counting rate. Such a detector has a number of advantages that allow one to consider the thermoelectric detector as a real alternative to the most promising single photon detectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号