首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
姚凌江  王玲玲 《物理学报》2008,57(5):3100-3106
采用散射矩阵方法,研究了在应力自由和硬壁两种典型的边界条件下含半圆弧形腔的量子波导中声学声子输运和热导性质.结果表明在两种边界条件下声子透射谱和热导有着不同的特征.在应力自由边界条件下,能观察到普适的量子化热导现象,当结构为一理想的量子线时,在低温区域有一个量子化平台出现,而当半圆弧形结构存在时,非均匀横向宽度引发的弹性散射使得量子化平台被破坏;在硬壁边界条件下,不可能观察到量子化热导现象,热导随温度的增加单调上升;计算结果表明还可以通过调节半圆弧形结构的半径来调控声子的输运概率和热导. 关键词: 声学声子输运 热导 量子体系  相似文献   

2.
By the use of the scattering matrix method, we investigate the effect of evanescent modes on acoustic phonon transport and thermal conductance in both convex and concave type three-dimensional quantum wire. Our results show that the evanescent modes can enhance the transmission coefficient and the thermal conductance in the concave type three-dimensional quantum wire. However, for the convex type three-dimensional quantum wire, the evanescent modes can play adverse effect on the phonon transport. When the length of scattering region is large enough, for all types of three-dimensional quantum wire, the influence of evanescent modes on phonon transport becomes very weak.  相似文献   

3.
We show that while narrow channel (quantum wire) transistors may not exhibit higher unity gain frequency or switching speed than wide channel (quantum well) transistors, they may none the less possess vastly improved noise characteristics. Thus, they are desirable if the application calls for maximal signal-to-noise ratio. The reduced noise temperature in quasi-one-dimensional channels is mostly an aftermath of acoustic phonon confinement (which modifies the phonon dispersion relations), rather than carrier confinement. This is very counter-intuitive since acoustic phonon confinement (and the resultant modification of the phonon dispersion relations) also increases carrier scattering rates by several orders of magnitude.  相似文献   

4.
《Physics letters. A》2006,359(3):234-240
Using the scattering-matrix method, we investigate the influences of boundary conditions on thermal conductance in quantum wire with structural defect. A comparison between the thermal conductances is made when stress-free, hard-wall, and mixed boundary conditions are applied for acoustic transport leads. The results show that the quantized thermal conductance plateau at very low temperature can be observed only in transport lead with stress-free boundary condition. For hard-wall or mixed boundary conditions, qualitatively different thermal conductance characteristics are found. Moreover, we find that the behavior of the thermal conductance sensitively depend on the geometric parameters and the position of the defect in quantum wire.  相似文献   

5.
This paper reports on the results of a self-consistent calculation of the rates of electron scattering from surface roughnesses, acoustic phonons, and polar optical phonons in a transistor structure based on a GaAs quantum wire in an AlAs matrix at temperatures T = 77 and 300 K. The rates of electron scattering are calculated in the electric-quantum limit approximation with due regard for both the collisional broadening of the electron energy spectrum and the Pauli principle. The influence of the gate voltage on these rates is investigated. The wave function of electrons and the energy level of their quantum ground state are determined by the self-consistent solution of the Poisson and Schrödinger equations.  相似文献   

6.
Small-signal ac transport of degenerate one-dimensional hot electrons in quantum wires of GaAs and In0.53Ga0.47As is studied for lattice temperatures of 77 K and 300 K. The carrier energy loss via polar optic phonons and momentum losses via polar optic phonons, acoustic phonons and ionized impurities are included in the calculations. Alloy disorder scattering in momentum loss is additionally incorporated for (In,Ga)As. The consideration of nonequilibrium optical phonons or hot phonons is found to enhance the 3dB cut-off frequency (f3dB) considerably, where the ac mobility falls to 0.707 of its low frequency value. f3dB is generally higher for (In,Ga)As quantum wire than for GaAs.  相似文献   

7.
We report on time-resolved microphotoluminescence experiments in a single GaAs/GaAlAs V-shaped quantum wire as a function of optical excitation intensity. At low pump power we observe that excitons are localized in quantum boxes formed by the local potential minima existing along the wire axis. As the pump power is increased, state filling of the lowest lying levels of the boxes appears. When two carriers occupy the first excited level of the box, a very efficient Auger scattering occurs, leading to a transfer of carriers from one box to another neighbouring one. The intradot Auger scattering time has been measured and is of the same order of magnitude as the LA-phonon emission rate. Received 5 February 2001  相似文献   

8.
彭小芳  陈丽群  罗勇锋  刘凌虹  王凯军 《物理学报》2013,62(5):56805-056805
采用散射矩阵方法, 研究了含双T形量子结构的量子波导中声学声子输运和热导性质. 结果表明: 在极低温度, 双T形量子结构能增强低温热导; 相反地, 在相对较高的温度范围, 双T形量子结构能降低低温热导. 而在整个低温范围内, 增加散射区域最窄处的宽度能增强低温热导. 计算结果表明可以通过调节含双T形量子结构的量子波导结构来调控声子的输运概率和热导. 关键词: 声学声子输运 热导 量子结构  相似文献   

9.
By using scattering matrix method, we investigate the acoustic phonons transport in a quantum waveguide embedded double defects at low temperatures. When acoustic phonons propagate through the waveguide, the total transmission coefficient versus the reduced phonon frequency exhibits a series of resonant peaks and dips, and acoustic waves interfere with each other in the waveguide to form standing wave with particular wavelengths. In the waveguide with void defects, acoustic phonons whose frequencies approach zero can transport without scattering. The acoustic phonons propagating in the waveguide with clamped material defects, the phonons frequencies must be larger than a threshold frequency. It is also found that the thermal conductance versus temperature is qualitatively different for different types of defects. At low temperatures, when the double defects are void, the universal quantum thermal conductance and a thermal conductance plateau can be clearly observed. However, when the double defects consist of clamped material, the quantized thermal conductance disappears but a threshold temperature where mode 0 can be excited emerges. The results can provide some references in controlling thermal conductance artificially and the design of phonon devices.  相似文献   

10.
By using scattering matrix method, we investigate the acoustic phonons transport in a quantum waveguide embedded double defects at low temperatures. When acoustic phonons propagate through the waveguide, the total transmission coefficient versus the reduced phonon frequency exhibits a series of resonant peaks and dips, and acoustic waves interfere with each other in the waveguide to form standing wave with particular wavelengths. In the waveguide with void defects, acoustic phonons whose frequencies approach zero can transport without scattering. The acoustic phonons propagating in the waveguide with clamped material defects, the phonons frequencies must be larger than a threshold frequency. It is also found that the thermal conductance versus temperature is qualitatively different for different types of defects. At low temperatures, when the double defects are void, the universal quantum thermal conductance and a thermal conductance plateau can be clearly observed. However, when the double defects consist of clamped material, the quantized thermal conductance disappears but a threshold temperature where mode 0 can be excited emerges. The results can provide some references in controlling thermal conductance artificially and the design of phonon devices.  相似文献   

11.
We study quantum interference effects which are observed in the low temperature magnetoresistance of corrugated-gate wires fabricated in the GaAs/AlGaAs modulation-doped heterostructure system. Negative magnetoresistance, which appears over a large range of magnetic field, is observed. In addition, small oscillations in the magnetoresistance are observed. We believe these results are caused by boundary (or geometry-induced) scattering, within the gated wire, which evolves as the nature of the system changes from a quantum-dot array to a wire with weak modulation.  相似文献   

12.
Electron Raman scattering (ERS) is investigated in a free-standing semiconductor quantum wire of cylindrical geometry for two classes of materials CdS and GaAs. The differential cross section (DCS) involved in this process is calculated as a function of a scattering frequency and the radius of the cylinder. Electron states are considered to be confined within a free-standing quantum wire (FSW). Single parabolic conduction and valence bands are assumed. The selection rules are studied. Singularities in the spectra are found and interpreted for various radii of the cylinder.  相似文献   

13.
We show that the scaling exponent for tunneling into a quantum wire in the "Coulomb Tonks gas" regime of impenetrable, but otherwise free, electrons is affected by impurity scattering in the wire. The exponent for tunneling into such a wire thus depends on the conductance through the wire. This striking effect originates from a many-body scattering resonance reminiscent of the Kondo effect. The predicted anomalous scaling is stable against weak perturbations of the ideal Tonks gas limit at sufficiently high energies, similar to the phenomenology of a quantum critical point.  相似文献   

14.
《Physics letters. A》2014,378(30-31):2195-2200
We study the ballistic phonon transport and thermal conductance of six low-lying vibration modes in quantum wire modulated with quantum dot at low temperatures. A comparative analysis is made among the six vibrational modes. The results show that the transmission rates of the six vibrational modes relative to reduced frequency display periodic or quasi-periodic oscillatory behavior. Among the four acoustic modes, the thermal conductance contributed by the torsional mode is the smallest, and the thermal conductances of other acoustic modes have adjacent values. It is also found that the thermal conductance of the optical mode increases from zero monotonously. Moreover, the total thermal conductance in concavity-shaped quantum structure is lower than that in convexity-shaped quantum structure. These thermal conductance values can be adjusted by changing the structural parameters of the quantum dot.  相似文献   

15.
介绍了量子阱、量子线、量子点、半导体超晶格、二维电子气等典型的低维半导体结构及其性质和分析方法。  相似文献   

16.
We study the resistivity of a quantum wire caused by backscattering of electrons by acoustic phonons. In the presence of Coulomb interactions, backscattering is strongly enhanced at low temperatures due to Luttinger liquid effects. Information about the strength of the interactions can be obtained from a measurement of the temperature dependence of the resistivity.  相似文献   

17.
The mobility limited by cluster scattering in ternary alloy semiconductor quantum wire(QWR) is theoretically investigated under Born approximation. We calculate the screened mobility due to clusters(high indium composition InGaN) scattering in the InxGa1 xN QWR structure. The characteristics of the cluster scattering mechanism are discussed in terms of the indium composition of clusters, the one-dimensional electron gas(1DEG) concentration, and the radius of QWR. We find that the density, breadth of cluster, and the correlation length have a strong effect on the electron mobility due to cluster scattering. Finally, a comparison of the cluster scattering is made with the alloy-disorder scattering. It is found that the cluster scattering acts as a significant scattering event to impact the resultant electron mobility in ternary alloy QWR.  相似文献   

18.
By including the scattering from bulk impurities and rough surface, a Green’s function approach to transport in a quasi-one-dimensional cylindrical wire is presented. Taking into account the quantum size effects (QSE), we calculate the one-particle Green’s function and the electrical conductivity along a quantum wire, yielding a new formula for the conductivity in quantum wires. It is shown that the conductivity exhibits certain oscillation in the region of very small radius of wires where the QSE are manifestly important, and its envelope decreases with decreasing the radius.  相似文献   

19.
The spectral density of the phase noise of an optical pulse in a fiber produced by guided acoustic wave Brillouin scattering (GAWBS) is derived from first principles. The predictions are in good agreement with the experimental results in a fiber interferometer. The experiments show that the lower limit on the quantum noise reduction is set by GAWBS. The GAWBS are of sufficiently low level to permit 5 dB squeezing.  相似文献   

20.
Ge/Si superlattices containing Ge quantum dots were prepared by molecular beam epitaxy and studied by resonant Raman scattering. It is shown that these structures possess vibrational properties of both two-and zero-dimensional objects. The folded acoustic phonons observed in the low-frequency region of the spectrum (up to 15th order) are typical for planar superlattices. The acoustic phonon lines overlap with a broad emission continuum that is due to the violation of the wave-vector conservation law by the quantum dots. An analysis of the Ge and Ge-Si optical phonons indicates that the Ge quantum dots are pseudoamorphous and that mixing of the Ge and Si atoms is insignificant. The longitudinal optical phonons undergo a low-frequency shift upon increasing laser excitation energy (2.54–2.71 eV) because of the confinement effect in small-sized quantum dots, which dominate resonant Raman scattering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号