首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For 30 C2GeHX germylenic isomers, one cyclic structure, X-germacyclopropenylidene, and three acyclics are considered, which include: ethynyl-X-germylene, X-vinylidenegermylene, and (X-ethynyl)germylene (X = H, F, Cl, and Br). The global minimum among six isomeric C2GeH2 (where X = H), is found to be cyclic, aromatic, singlet germacyclopropenylidene. In contrast, among the 24 corresponding halogermylenes, C2GeHX (where X = F, Cl, and Br), the global minima switch to acyclic, singlet ethynylhalogermylenes, at eight reasonably high ab initio and DFT levels. The direct resonance interaction between X and the divalent center Ge in the singlet acyclic ethynylhalogermylene structures, is claimed to justify switching of the calculated global minima in the halo derivatives. GIAO-NICS calculations indicate that the X-germacyclopropenylidene isomer is more aromatic for X = H than X = F, Cl, or Br. The angle ∠XGeC bending potential energy curves show the singlet and triplet ethynylgermylene crossing at ≈146°, for X = H.  相似文献   

2.
Ab initio calculations with full electron correlation by the perturbation method to second order and hybrid density functional theory calculations by the B3LYP method utilizing the 6-31G(d), 6-311+G(d, p), and 6-311+G(2d, 2p) basis sets have been carried out for the XNCO and XOCN (X = H, F, Cl, Br) molecules. From these calculations, force constants, vibrational frequencies, infrared intensities, Raman activities, depolarization ratios, and structural parameters have been determined and compared to the experimental quantities when available. By combining previously reported rotational constants for HNCO, ClNCO and BrNCO with the ab initio MP2/6-311+G(d, p) predicted structural values, adjusted r0 parameters have been obtained. The r0 values for BrNCO are: r(BrN) = 1.857(5); r(NC) = 1.228(5); r(CO) = 1.161(5) Å; BrNC = 117.5(5) and NCO = 172.3(5)°. For ClNCO the determined r0 parameters are in excellent agreement with the previously determine rs values, whereas those for HNCO the HNC angle is larger with a value of 126.3(5)° compared to the previous reported value of 123.9(17)°. However, considering the relatively large uncertainty in the value given initially the two results are in near agreement. Structural parameters are also estimated for FNCO and XOCN (X = H, F, Cl, Br). The centrifugal distortion constants have been calculated and are compared to the experimentally (XNCO: X = H, Cl, Br) determined values. Predicted values for the barriers of linearity are given for both the XNCO (X = H, F, Cl, Br) molecules and the results were compared to the corresponding isothiocyanate molecules. The predicted frequencies for the fundamentals of the XNCO molecules compare favorably to the experimental values but some of the predicted intensities differ significantly from those in the observed spectra. The two OCN bends for HOCN have been assigned and the frequencies for the two corresponding fundamentals of DOCN are predicted.  相似文献   

3.
4.
An efficient route for the regio- and stereoselective ring opening of N-tosylaziridines with zinc dihalides (ZnX2, X = Cl, Br, I) is described. Depending on the solvent and Zn(II) halide, β-halo amines or imidazolines are obtained selectively in good to excellent yields.  相似文献   

5.
The platinum(II) complex [PtMe2(bpy)] (bpy = 2,2′-bipyridine) reacted with a large excess of dihaloalkanes X(CH2)nX (n = 1, X = Cl; n = 4, X = Br) to form the platinum(IV) complexes [PtMe2X{(CH2)nX}(bpy)] (n = 1, X = Cl, 1a; n = 4, X = Br, 1b). The reaction of complexes 1a and 1b with SnBr2 resulted in insertion of SnBr2 into Pt–X (X = Cl, Br) bond to afford the trihalostannyl complexes [PtMe2(SnBr2X){(CH2)nX}(bpy)] (n = 1, X = Cl, 2a; n = 4, X = Br, 2b). The synthesis of such trihalostannylplatinum(IV) complexes is reported for the first time. The complex 2a was decomposed in CH2Cl2 solution and single crystals of [PtBr2(bpy)] (3a) were obtained. The X-ray structure determination of 3a revealed a new polymorphic form of [PtBr2(bpy)]. The molecules undergo a remarkable stacking along the b-axis to form a zigzag Pt?Pt?Pt chain containing both short (3.799 Å) and long (5.175 Å) Pt?Pt separations through the crystal. The crystal structure is compared to that of the yellow modification of [PtBr2(bpy)].  相似文献   

6.
To study the temperature-dependent structural changes and to analyze the crystal chemical behavior of the halogens as a function of temperature, a crystal of the recently discovered mineral mutnovskite, ideally Pb2AsS3(I,Cl,Br), has been investigated by X-ray single-crystal diffraction methods at 300 and 110 K. At room temperature (RT) mutnovskite was confirmed to possess a centrosymmetric structure-type, space group Pnma, while at low temperature (110 K) it adopts a non-centrosymmetric orthorhombic structure-type, space group Pnm21, with a=11.5394(9) Å, b=6.6732(5) Å, c=9.3454(7) Å, V=719.64(9) Å3 and Z=2. Mutnovskite reconverts to the centrosymmetric-type upon returning to RT thus indicating that the phase transition is completely reversible in character. The refinement of the LT-structure leads to a residual factor R=0.0336 for 1827 independent observed reflections [Fo>4σ(Fo)] and 80 variables. The crystal structure of cooled mutnovskite is topologically identical to that observed at RT and the slight structural changes occurring during the phase transition PnmaPnm21 are mainly restricted to the coordination polyhedra around Pb. The structure solution revealed that I and Cl are ordered into two specific sites. Indeed, the unique mixed (I,Cl) position in the RT-structure (Wyckoff position 4c) transforms into two 2a Wyckoff positions in the LT-structure hosting I and Cl, respectively.  相似文献   

7.
[Cu(SRaaiNR′)(PPh3)X] complexes are synthesized by the reaction of CuX (X = Cl, Br, I), triphenylphosphine and 1-alkyl-2-[(o-thioalkyl)phenylazo]imidazole (SRaaiNR′). The single crystal X-ray structure of [Cu(SEtaaiNH)(PPh3)I] (SEtaaiNH = 2-[(o-thioethyl)phenylazo]imidazole) shows a distorted tetrahedral geometry of the copper center with bidentate, N(azo), N(imidazole) chelation of SEtaaiNH and coordination from PPh3 and iodine. These complexes show a trans-to-cis isomerization upon irradiation with UV light. The reverse transformation, cis-to-trans isomerization, is very slow with visible light irradiation and is thermally accessible. The quantum yields (?t→c) of the trans-to-cis isomerization of [Cu(SRaaiNR′)(PPh3)X] are lower than the free ligand values. This is due to the increased mass and rotor volume of the complexes compared to the free ligand data. The rate of isomerization follows the order: [Cu(SRaaiNR′)(PPh3)Cl] < [Cu(SRaaiNR′)(PPh3)Br] < [Cu(SRaaiNR′)(PPh3)I]. The activation energy (Ea) of the cis-to-trans isomerization is calculated by a controlled temperature reaction. DFT computation of representative complexes has been used to determine the composition and energy of the molecular levels.  相似文献   

8.
The ligands (HL1, HL2 and HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in chloroform gave the adducts [ReX(CO)3(HL)] (1a X = Cl, R = H; 1a′ X = Br, R = H; 1b X = Cl, R = CH3; 1b′ X = Br, R = CH3; 1c X = Cl, R = Ph; 1c′ X = Br, R = Ph) in good yield. All the compounds have been characterized by elemental analysis, mass spectrometry (FAB), IR and 1H NMR spectroscopic methods, and the structures of the ligands have been elucidated by X-ray diffraction. In the case of HL1, we have tried the reaction with [ReX(CO)5] (X = Br, Cl) in toluene and we proved the formation of the adduct also by this way by the isolation of single crystals of 1a′ · ½C7H8.  相似文献   

9.
Homogeneous catalysis by palladium complexes with phosphorus(III) ligands of the carbonylation of o-xylylene dihalides in the presence of water to form 3-isochromanone has been studied. Triphenylphosphine was found to provide the most effective catalyst, and by-products and intermediates of systems containing this ligand have been investigated. 2-Indanone is one by-product but is unstable to decomposition under catalytic conditions. Excess PPh3 is necessary to prolong activity of the catalyst but is also transformed to bis-phosphonium compound [o-C6H4(CH2PPh3)2]X2 (X = Cl or Br); this quaternization has been investigated and the structure of the bromide salt determined by X-ray diffraction. An unstable oxidative addition product of Pd(PPh3)4 was detected as a probable intermediate and related to the previously reported but catalytically-inactive complex trans-Pd(o-CH2C6H4CH2Cl)Cl(PMe3)2, which has been structurally characterized by X-ray diffraction in this work.  相似文献   

10.
The [ReOX2(hbt)(EPh3)] (X = Cl, Br; E = As, P) chelates have been prepared in the reactions of [ReOX3(EPh3)2] complexes (X = Cl, Br; E = P, As) with 2-(2′-hydroxyphenyl)-2-benzothiazole (hbtH) in acetone. From the reactions of [ReOX3(PPh3)2] with hbtH two kind of crystals [ReOX2(hbt)(PPh3)] · MeCN and [ReOX2(hbt)(PPh3)] with different arrangement of halide ions (cis and trans) were isolated, whereas the [ReOX3(AsPh3)2] oxocompounds react with hbtH to give only cis-halide isomers. The complexes were structurally and spectroscopically characterised. The electronic structures of both [ReOBr2(hbt)(PPh3)] isomers have been calculated with the density functional theory (DFT) method. The TDDFT/PCM calculations have been employed to produce a hundred of singlet excited-states starting from the ground-state geometry optimized in the gas phase of cis- and trans-halide isomers of [ReOBr2(hbt)(PPh3)] and the UV–Vis spectra of these complexes have been discussed on this basis.  相似文献   

11.
Reactions of bis(pyridin-2-yl)ketone with tin tetrahalides, SnX4 (X = Cl or Br), or organotin trichlorides, RSnCl3 (R = Ph, Bu or CH2CH2CO2Me), in ROH (R = Me or Et) readily produces RObis(pyridin-2-yl)methanolato)tin complexes, [5: RO(py)2C(OSnX3)] (5: R,X = Me,Cl; Et,Cl; Et,Br) or [6: MeO(py)2C(OSnCl2R)] (R = Ph, Bu, CH2CH2CO2Me). In addition, halide exchange reaction between SnI4 and (5: R,X = Me,Cl) occurred to give (5: R,X = Me,I). The crystal structures of six tin(IV) derivatives indicated, in all cases, a monoanionic tridentate ligand, [RO(py)2C(O)-N,O,N], arranged in a fac manner about a distorted octahedral tin atom. The Sn–O and Sn–N bonds lengths do not show much variation amongst the six complexes despite the differences in the other ligands at tin.  相似文献   

12.
The isotypic oxonitridosilicate halides Ce10[Si10O9N17]Br, Nd10[Si10O9N17]Br and Nd10[Si10O9N17]Cl were obtained by the reaction of the respective lanthanide metals, their oxides and halides with “Si(NH)2” in a radiofrequency furnace at temperatures around 1800 °C, using CsBr, resp. CsCl, as a flux. The crystal structures were determined by single-crystal X-ray diffraction (Pbam, no. 55, Z=2; Ce/Br: a=10.6117(9) Å, b=11.2319(10) Å, c=11.688(8) Å, R1=0.0356; Nd/Br: a=10.523(2) Å, b=11.101(2) Å, c=11.546(2) Å, R1=0.0239; Nd/Cl: a=10.534(2) Å, b=11.109(2) Å, c=11.543(2) Å, R1=0.0253) and represent a new layered structure type. The structure refinements were performed utilizing an O/N-distribution model according to Paulings rules, i.e. nitrogen was positioned on all bridging sites and mixed O/N-occupation was assumed on the terminal sites resulting in charge neutrality of the compounds. The layers consist of condensed [SiN2(O/N)2] and [SiN3(O/N)] tetrahedra of Q2 and Q3 type. The chemical composition of the compounds was derived from chemical analyses for Nd10[Si10O9N17]Br and electron probe micro analyses (EPMA) for all three compounds. The results of IR spectroscopic investigations are reported.  相似文献   

13.
N-thioamide thiosemicarbazone derived from 4-(methylthio)benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in methanol gave the adducts [ReX(CO)3(HLn)] (1a X = Cl, n = 1; 1a′ X = Br, n = 1; 1b X = Cl, n = 2; 1b′ X = Br, n = 2; 1c X = Cl, n = 3; 1c′ X = Br, n = 3) in good yield.All the compounds have been characterized by elemental analysis, mass spectrometry (ESI), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3, HL3·(CH3)2SO and 1b′·H2O were also elucidated by X-ray diffraction. In 1b′, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms (κS,N3) forming a five-membered chelate ring, as well as three carbonyl and bromide ligands. The resulting coordination polyhedron can be described as a distorted octahedron.The structure of the dimers is based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6] (2a), [Re2(L2)2(CO)6] (2b) and [Re2(L3)2(CO)6] (2c) as determined by X-ray studies. Methods of synthesis were optimized to obtain amounts of these thiosemicarbazonate complexes. In these compounds the dimer structures are achieved by Re-S-Re bridges, where S is the thiolate sulphur from a κS,N3-bidentate thiosemicarbazonate ligand.Some single crystals isolated in the synthesis of 2b contain [Re(L4)(L2)(CO)3] (3b) where L4 (=2-methylamine-5-(para-methylsulfanephenyl)-1,3,4-thiadiazole) is originated in a cyclization process of the thiosemicarbazone. Furthermore, the rhenium atom is coordinate by the sulphur and the thioamidic nitrogen of the thiosemicarbazonate (κS,N2) affording a four-membered chelate ring.  相似文献   

14.
Paramagnetic Ru(III) complexes of the type [RuX2(EPh3)2(L)] (where X = Cl or Br; E = P or As; L = monobasic bidentate benzophenone ligand) have been synthesized from the reaction of ruthenium(III) precursors, viz. [RuX3(EPh3)3] (where X = Cl, E = P; X = Cl or Br, E = As) or [RuBr3(PPh3)2(CH3OH)] and substituted hydroxy benzophenones in a 1:1 molar ratio in benzene under reflux for 6 h. The hydroxy benzophenone ligands behave as monoanionic bidentate O,O donors and coordinate to ruthenium through the phenolate oxygen and ketonic oxygen atoms, generating a six-membered chelate ring. The compositions of the complexes have been established by analytical and spectral (FT-IR, UV-Vis, EPR) and X-ray crystallography methods. The single crystal structure of the complex [RuCl2(PPh3)2(L1)] (1) has been determined by X-ray crystallography and indicates the presence of a distorted octahedral geometry in these complexes. The magnetic moment values of the complexes are in the range 1.75-1.89 μB, which reveals the presence of one unpaired electron in the metal ion. EPR spectra of liquid samples at liquid nitrogen temperature (LNT) show a rhombic distortion (gx ≠ gy ≠ gz) around the ruthenium ion. The complexes are redox active and display quasi-reversible oxidation and quasi-reversible reduction waves versus Ag/AgCl.  相似文献   

15.
A series of chiral organotin halides containing 2-(4-R)-oxazolinyl-o-carboranes (R = i-propyl 1, t-butyl 2; CabOxa) was prepared from o-carborane with a chiral oxazoline auxiliary. X-ray structural analysis of the representative chiral organotin halide, [2-(4-i-propyl)-oxazolinyl-o-carboranyl]SnMe2Br (4), revealed the formation of a stable penta-coordinated tin center due to a N → Sn interaction. Similar O → Sn assisted intramolecular penta-coordinated tin complexes (9 and 10) were prepared from methoxy-o-carborane ligands, MeOCH(Z)-o-carborane (Z = H 7, Ph 8; CabOMe), respectively, and a rigid o-carboranyl backbone provided the basic skeleton for the facile formation of organotin complexes.  相似文献   

16.
The cylcopropanation reactions of the LiCH2X (X = F, Cl, Br and I) carbenoids with ethylene were investigated at the CCSD(T)/6-311G∗∗//B3LYP/6-311G∗∗ level of theory along two reaction pathways: methylene transfer and carbometalation. There exists a competition between these two reaction pathways for the different substituted lithium carbenoids. Interestingly, the substituent has different effect on the methylene transfer and carbometalation pathways. The trend of the activation energies for the methylene transfer pathway is LiCH2F (9.8 kcal/mol) > LiCH2Cl (7.6 kcal/mol) ≈ LiCH2Br (7.4 kcal/mol) ≈ LiCH2I (7.5 kcal/mol), whereas the activation energies for the carbometalation pathway increases in this order: LiCH2F (6.1 kcal/mol) < LiCH2Cl (7.1 kcal/mol) < LiCH2Br (8.2 kcal/mol) < LiCH2I (8.5 kcal/mol). The different effect mainly arises from that the substituent of the lithium carbenoid influences the hybridization character of the C1 atom. The mechanistic competition varies due to the different substituents of the lithium carbenoids during the cyclopropanation reactions. This result is revelatory for us to control mechanistic competition to obtain target product by modifying the substituents of the lithium carbenoids.  相似文献   

17.
The reaction of Ni(OAc)2, NiX2 (X = Cl, Br) or CoCl2 with the proligand 2-amino-2-methyl-1,3-propanediol (ampdH2) affords a new family of tetranuclear complexes. The syntheses of [Ni4(OAc)4(ampdH)4] (1) and [M4X4(ampdH)4] (M = Ni, X = Cl, 2; M = Ni, X = Br, 3; M = Co, X = Cl, 4) are reported, together with the single crystal X-ray structures of 1, 2 and 4 and the magnetochemical characterization of 1, 3 and 4. Each member of this family of complexes displays a low symmetry structure that incorporates a {M4O4} core unit based on a distorted cubane. Magnetic measurements reveal ferromagnetic exchange interactions for 1, 3 and 4. These give rise to S = 4 ground state spins for the tetranuclear Ni complexes and an anisotropic effective S′ = 2 ground state for the Co complex.  相似文献   

18.
Rhenium(I) tricarbonyl complexes with bispyridine ligands bearing sulfur-rich pendant, Re(CO)3(Medpydt)X (Medpydt = dimethyl 2-(di(2-pyridyl)methylene)-1,3-dithiole-4,5-dicarboxylate; X = Cl, 1; X = Br, 2) and Re(CO)3(MebpyTTF)X (MebpyTTF = 4,5-bis(methyloxycabonyl)-4′,5′-(4′-methyl-2,2′-dipyrid-4-ylethylenedithio)-tetrathiafulvalene; X = Cl, 5; X = Br, 6), were prepared from the reactions between Re(CO)5X (X = Cl, Br) and Medpydt or MebpyTTF, respectively. Hydrolysis of the above complexes afforded the analogues with carboxylate derivatives, Re(CO)3(H2dpydt)X (X = Cl, 3; X = Br, 4) and Re(CO)3(H2bpyTTF)X (X = Cl, 7; X = Br, 8). The crystal structures for complexes 1 · 2H2O, 5 and 6 were determined using X-ray single crystal diffraction. UV-Vis absorption spectra of the rhenium complexes show the intraligand and MLCT transitions. Electrochemical behaviors of all new compounds were studied with cyclic voltammetry. Upon irradiation, complexes 3-6 exhibit blue to red emissions in fluid solutions at the room temperature. The performance of complexes 3, 4, 7 and 8 as photosensitizers for anatase TiO2 solar cells was preliminarily investigated as well.  相似文献   

19.
Rapid oxidation of nonfluorescent pyrenyl-CH2SeAr (Ar = o-nitrophenyl) by hypochlorite yielded pyrenyl-CH2Cl and pyrenyl-CH2OH and turns on blue fluorescence, while slow oxidation of pyrenyl-CH2SeAr with excess H2O2 leads to pyrenyl-CHO which emits a bluish-green fluorescence. The homolog, pyrenyl-CH2CH2SeAr′ (Ar′ = o-nitrophenyl) reacts slower with H2O2 and ClO giving the same product, vinyl pyrene.  相似文献   

20.
Oligothioethers 4-RC6H4(SC6H4-4)nX (n = 1-3; X = Br, I; R = NO2; X = Br; R = MeO. n = 1 and 2; X = I; R = MeO. n = 4; X = Br; R = NO2) have been prepared through a process involving (i) palladium-catalyzed C-S coupling between 4-RC6H4(SC6H4-4)n−1I and 4-BrC6H4SH to give 4-RC6H4(SC6H4-4)nBr and (ii) copper-catalyzed replacement of Br by I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号