首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Based on the framework of the Flügge's shell theory, the transfer matrix approach and the Romberg integration method, this paper presents the vibration behavior of an isotropic and orthotropic oval cylindrical shell with parabolically varying thickness along its circumference. The governing equations of motion of the shell, which have variable coefficients are formulated and solved. The analysis is formulated to overcome the mathematical difficulties related to mode coupling, which comes from variable curvature and thickness of shell. The vibration equations of the shell are reduced to eight first‐order differential equations in the circumferential coordinate and by using the transfer matrix of the shell, these equations can be written in a matrix differential equation. The proposed model is adopted to get the vibration frequencies and the corresponding mode shapes for the symmetrical and antisymmetrical modes of vibration. The sensitivity of the frequency parameters and the bending deformations to the shell geometry, ovality parameter, thickness ratio, and orthotropic parameters corresponding to different type modes of vibration is investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Two approaches to the calculation of closed thick layered cylindrical shells are developed. They are based on division of the cylindrical shell across its thickness by concentric circumferential surfaces into a series of constituent cylindrical shells. Satisfying the contact conditions on the surfaces between constituent shells, it is possible to determine the frequency of free bending vibrations of the initial shell with a sufficient accuracy. In the first approach, the distribution of unknown functions across the shell thickness is sought on the basis of an analytical solution to the corresponding system of differential equations; in the second one, the distribution is assigned by polynomial approximation functions.  相似文献   

3.
密封容器组合壳自由振动的精确解   总被引:4,自引:0,他引:4  
给出了一类密封容器组合壳自由振动问题的精确解,基于Love经典薄壳理论,导出了具有任意经线形状的旋转壳体在轴对称振动时的基本方程,组合壳结构中球壳与柱壳的连接条件是通过连接处的变形连续性和内力平衡关系得出的。问题的数学模型被归结为常微分方程组在球壳和 壳两个区间上的特征值问题。振动模态函数是由Legendre和三角函数构造出来,并且得到了精确的频率方程。所有的计算都是在Maple程序下运行的,无论是精确的符号运算还是具有所需有效数学精度的数值计算,都表明该文所编译的Maple程序是简单而有效的。固有频率的数值结果同文献中有限元法和其它数值方法的结果作了比较。作为一个标准,该文给出的精确解对于检验各种近似方法的精密度是有价值的。  相似文献   

4.
The natural vibrations of orthotropic shells are considered in a three-dimensional formulation for different versions of the boundary conditions on the faces: rigid clamping rigid clamping, rigid clamping free surface, and mixed conditions. Asymptotic solutions of the corresponding dynamic equations of the three-dimensional problem of the theory of elasticity are obtained. The principal values of the frequencies of natural vibrations are determined. It is shown that three types of natural vibrations occur in the shell: two shear vibrations and a longitudinal vibration, which are due solely to the boundary conditions on the faces. It is proved that each boundary layer has its own natural frequency. The boundary-layer functions are determined and the rates at which they decrease with distance from the faces inside the shell are established.  相似文献   

5.
约束层阻尼圆柱壳的自由振动   总被引:2,自引:0,他引:2       下载免费PDF全文
给出了被动约束层阻尼圆柱壳(PCLD)的自由振动特性.波传播法被用来求解两端简支的PCLD圆柱壳的振动,而不是用有限元法、传递矩阵法和Rayleigh-Ritz法.基于Sanders薄壳理论,导出了PCLD正交各向异性圆柱壳的控制方程.数值结果表明当前的方法要比目前其它方法有效.讨论了粘弹性层和约束层的厚度,正交各向异性约束层的弹性模量比率和粘弹性层的复剪切模量对频率参数和损失因子的影响.  相似文献   

6.
In this paper an analytical procedure is given to study the free vibration and stability characteristics of homogeneous and non-homogeneous orthotropic truncated and complete conical shells with clamped edges under uniform external pressures. The non-homogeneous orthotropic material properties of conical shells vary continuously in the thickness direction. The governing equations according to the Donnell’s theory are solved by Galerkin’s method and critical hydrostatic and lateral pressures and fundamental natural frequencies have been found analytically. The appropriate formulas for homogeneous orthotropic and isotropic conical shells and for cylindrical shells made of homogeneous and non-homogeneous, orthotropic and isotropic materials are found as a special case. Several examples are presented to show the accuracy and efficiency of the formulation. The closed-form solutions are verified by accurate different solutions. Finally, the influences of the non-homogeneity, orthotropy and the variations of conical shells characteristics on the critical lateral and hydrostatic pressures and natural frequencies are investigated, when Young’s moduli and density vary together and separately. The results obtained for homogeneous cases are compared with their counterparts in the literature.  相似文献   

7.
In this study, based on Reddy cylindrical double-shell theory, the free vibration and stability analyses of double-bonded micro composite sandwich cylindrical shells reinforced by carbon nanotubes conveying fluid flow under magneto-thermo-mechanical loadings using modified couple stress theory are investigated. It is assumed that the cylindrical shells with foam core rested in an orthotropic elastic medium and the face sheets are made of composites with temperature-dependent material properties. Also, the Lorentz functions are applied to simulation of magnetic field in the thickness direction of each face sheets. Then, the governing equations of motions are obtained using Hamilton's principle. Moreover, the generalized differential quadrature method is used to discretize the equations of motions and solve them. There are a good agreement between the obtained results from this method and the previous studies. Numerical results are presented to predict the effects of size-dependent length scale parameter, third order shear deformation theory, magnetic intensity, length-to-radius and thickness ratios, Knudsen number, orthotropic foundation, temperature changes and carbon nanotubes volume fraction on the natural frequencies and critical flow velocity of cylindrical shells. Also, it is demonstrated that the magnetic intensity, temperature changes and carbon nanotubes volume fraction have important effects on the behavior of micro composite sandwich cylindrical shells. So that, increasing the magnetic intensity, volume fraction and Winkler spring constant lead to increase the dimensionless natural frequency and stability of micro shells, while this parameter reduce by increasing the temperature changes. It is noted that sandwich structures conveying fluid flow are used as sensors and actuators in smart devices and aerospace industries. Moreover, carotid arteries play an important role to high blood rate control that they have a similar structure with flow conveying cylindrical shells. In fact, the present study can be provided a valuable background for more research and further experimental investigation.  相似文献   

8.
The author examines orthotropic layered cylindrical shells for which the moduli of elasticity of the load-carrying layers substantially exceed the shear modulus between layers. This class of structure includes, in particular, shells made of orthotropic glass-reinforced plastic. In this case the classical theory based on the Kirchhoff-Love hypotheses requires refinement; the corresponding equations obtained as a result of approximating the distribution of shear stresses or displacements over the thickness of the shell by a certain known function are presented in [4, 7, 8]. In this paper equations that make it possible to construct the stress distribution over the shell thickness are obtained within the framework of the engineering theory on the basis of the hypothesis of the incompressibility of a normal element.Mekhanika Polimerov, Vol. 4, No. 1, pp. 136–144, 1968  相似文献   

9.
Mechanics of Composite Materials - Using a system of equations corresponding to the classical theory of orthotropic cylindrical shells, the free vibrations of a thin elastic orthotropic cylindrical...  相似文献   

10.
A method of determining the regions of dynamic instability of an orthotropic cylindrical shell "bonded" to an elastic cylinder is proposed. An expression for the core reaction is obtained from the coupling conditions for the forces normal to the lateral surface and the radial displacements of the shell and the core at the contact surface. When the reaction is substituted in the system of equations of motion of the shell, the part corresponding to the free vibrations of the cylinder is discarded. The system of equations of motion of the shell is reduced to an equation of Mathieu type, from which transcendental equations for determining the boundaries of the regions of dynamic instability are obtained. These regions are analyzed for various modes of loss of stability and different values of the core modulus of elasticity.  相似文献   

11.
本文提出一种一般解析方法——空间变量变换法,用以求解任意边界条件下圆柱厚壳自由振动问题.运用本文方法对悬臂圆柱厚壳的自振特性作了计算,计算结果与薄壳理论相应结果及试验值作了比较.理论分析和计算结果表明,本文方法具有很好的收敛性和精确性,可以推广用于分析梁、板、壳的自由振动.  相似文献   

12.
In this paper, the free vibration of a two-dimensional functionally graded circular cylindrical shell is analyzed. The equations of motion are based on the Love’s first approximation classical shell theory. The spatial derivatives of the equations of motion and boundary conditions are discretized by the methods of generalized differential quadrature (GDQ) and generalized integral quadrature (GIQ). Two kinds of micromechanics models, viz. Voigt and Mori–Tanaka models are used to describe the material properties. To validate the results, comparisons are made with the solutions for FG cylindrical shells available in the literature. The results of this study show that the natural frequency of the material can be modified in order to meet the expected results through manipulation of the constituent volume fractions. A comprehensive comparison is then drawn between ordinary and 2-D FG cylindrical shells.  相似文献   

13.
From linear vibration theory for beams and plates, one can express the response as a linear combination of its natural modes. For beams, these eigenfunctions can be shown to be mutually orthogonal for any boundary conditions. For plates, orthogonality of the modes is not guaranteed, but can be proven for various boundary conditions. Modal analysis for beams and plates allows the system response to be broken down into simpler vibration models, due to the orthogonality of the modes. Here the modal analysis approach is extended to the vibration of thin cylindrical shells. The longitudinal, radial, and circumferential displacements are coupled with each other, due to Poisson's ratio and the curvature of the shell. As will be shown, the mode shapes can be solved analytically with numerically determined coefficients. The immediate application of this work will be for modal sensing of cylindrical shell vibrations using thin piezoelectric films.  相似文献   

14.
This study discards assumptions about displacement models and stress distribution and quotes the δ-function to establish the state equation for closed orthotropic cylindrical shells with two clamped edges. An identical exact solution is presented for the statics of thin, moderately thick, and thick laminated closed cylindrical shells with two clamped edges. Numerical results are obtained and compared with those calculated using SAP5.  相似文献   

15.
应用轴对称旋转扁壳的非线性大挠度动力学方程,研究了波纹扁壳在均布载荷作用下的非线性受迫振动问题.采用格林函数方法,将扁壳的非线性偏微分方程组化为非线性积分微分方程组.再使用展开法求出格林函数,即将格林函数展开为特征函数的级数形式,积分微分方程就成为具有退化核的形式,从而容易得到关于时间的非线性常微分方程组.针对单模态振形,得到了谐和激励作用下的幅频响应.作为算例,研究了正弦波纹扁球壳的非线性受迫振动现象.该文的解答可供波纹壳的设计参考.  相似文献   

16.
A numerical study on the free vibration analysis for laminated conical and cylindrical shell is presented. The analysis is carried out using Love's first approximation thin shell theory and solved using discrete singular convolution (DSC) method. Numerical results in free vibrations of laminated conical and cylindrical shells are presented graphically for different geometric and material parameters. Free vibrations of isotropic cylindrical shells and annular plates are treated as special cases. The effects of circumferential wave number, number of layers on frequencies characteristics are also discussed. The numerical results show that the present method is quite easy to implement, accurate and efficient for the problems considered.  相似文献   

17.
Nonlinear vibration analysis of circular cylindrical shells has received considerable attention from researchers for many decades. Analytical approaches developed to solve such problem, even not involved simplifying assumptions, are still far from sufficiency, and an efficient numerical scheme capable of solving the problem is worthy of development. The present article aims at devising a novel numerical solution strategy to describe the nonlinear free and forced vibrations of cylindrical shells. For this purpose, the energy functional of the structure is derived based on the first-order shear deformation theory and the von–Kármán geometric nonlinearity. The governing equations are discretized employing the generalized differential quadrature (GDQ) method and periodic differential operators along axial and circumferential directions, respectively. Then, based on Hamilton's principle and by the use of variational differential quadrature (VDQ) method, the discretized nonlinear governing equations are obtained. Finally, a time periodic discretization is performed and the frequency response of the cylindrical shell with different boundary conditions is determined by applying the pseudo-arc length continuation method. After revealing the efficiency and accuracy of the proposed numerical approach, comprehensive results are presented to study the influences of the model parameters such as thickness-to-radius, length-to-radius ratios and boundary conditions on the nonlinear vibration behavior of the cylindrical shells. The results indicate that variation of fundamental vibrational mode shape significantly affects frequency response curves of cylindrical shells.  相似文献   

18.
Buckling and vibration analysis of functionally graded magneto-electro-thermo-elastic (FGMETE) circular cylindrical shell are carried out in the present work. The Hamilton principle, higher order shear deformation theory, constitutive equation considering coupling effect between mechanical, electric, magnetic, thermal are considered to derive the equations of motion and distribution of electrical potential, magnetic potential along the thickness direction of FGMETE circular cylindrical shell. The influences of various external loads, such as axis force, temperature difference between the bottom and top surface of shell, surface electric voltage and magnetic voltage, on the buckling response of FGMETE circular cylindrical shell are investigated. The natural frequency obtained by present method is compared with results in open literature and a good agreement is obtained.  相似文献   

19.
Flexible paraboloidal shells, as key components, are increasingly utilized in antennas, reflectors, optical systems, aerospace structures, etc. To explore precise shape and vibration control of the paraboloidal membrane shells, this study focuses on analysis of microscopic control actions of segmented actuator patches laminated on the surface of a free paraboloidal membrane shell. Governing equations of the membrane shell system and modal control forces of distributed actuator patches are presented first, and followed by the analysis of dominating micro-control actions based on various natural modes, actuator locations and geometrical parameters. Finally, according to the parametric analysis, simulation data reveal main factors significantly influencing active control behavior on smart free-floating paraboloidal membrane shell systems, thus providing design guidelines to achieve optimal control of paraboloidal shell systems.  相似文献   

20.
In this paper, a semi-analytical method for the free vibration behavior of spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells under the thermal environment is investigated. The distribution of linear and uniform temperature along the direction of thickness is assumed. The structure is embedded within a generalized nonlinear viscoelastic foundation, which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The cylindrical shell has three layers consist of ceramic, FGM, and metal in two cases. In the first model i.e. Ceramic-FGM-Metal (CFM), the exterior layer of the cylindrical shell is rich ceramic while the interior layer is rich metal and the functionally graded material is located between these layers and the material distribution is in reverse order in the second model i.e. Metal-FGM-Ceramic (MFC). The material constitutive of the stiffeners is continuously changed through the thickness. Using the Galerkin method based on the von Kármán equations and the smeared stiffeners technique, the problem of nonlinear vibration has been solved. In order to find the nonlinear vibration responses, the fourth order Runge–Kutta method is utilized. The results show that the different angles of stiffeners and nonlinear elastic foundation parameters have a strong effect on the vibration behaviors of the SSMFG cylindrical shells. Also, the results illustrate that the vibration amplitude and the natural frequency for CFM and MFC shells with the first longitudinal and third transversal modes (m = 1, n = 3) with the stiffeners angle θ = 30°, β = 60° and θ = β = 30° is less than and more than others, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号