首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Non》2006,352(36-37):3787-3793
It is known that surface structural relaxation takes place more rapidly than bulk structural relaxation, especially in the presence of water vapor. The surface structural relaxation kinetics of the silica glass fiber and plates was compared at 950 °C and the surface structural relaxation kinetics of silica glass fiber was found to be faster than that of the silica glass plate, even though the composition and initial fictive temperatures of the samples were the same. The observed difference of the surface structural relaxation kinetics between silica glass fiber and silica glass plate can be accounted for using a diffusion equation with time-dependent surface concentration. The analysis indicates that there is a general size effect on the surface structural relaxation kinetics, with smaller sized samples exhibiting faster relaxation kinetics.  相似文献   

2.
《Journal of Non》2007,353(30-31):2938-2943
Both surface and bulk fictive temperatures of chlorine-containing silica glass were measured using the IR method, after thermal, mechanical and chemical treatments. A metastable equilibrium state at 1200 °C was first established for the glass by heat-treatment and a uniform fictive temperature was observed except for the sample surface created by polishing after the heat-treatment. The densified layer of the polished surface shifted the IR peak wavenumber, making the fictive temperature appear higher than the bulk. During the second heat-treatment at 950 °C, the sample with the as-heat-treated surface and uniform fictive temperature of 1200 °C developed non-uniform fictive temperature distribution with the bulk fictive temperature becoming lower than the surface fictive temperature. Usually, surface structural relaxation is faster than bulk structural relaxation and the surface fictive temperature becomes lower than the bulk fictive temperature when heat-treated at a lower temperature than the initial fictive temperature. The observed anomalous feature was attributed to chlorine volatilization from the glass surface layer creating a high viscosity surface layer. This conclusion was supported by the diffusion data of chlorine in the glass available in the literature.  相似文献   

3.
《Journal of Non》2006,352(36-37):3929-3935
The structure and properties of amorphous materials, in general, change with their thermal history. This is usually explained using the concept of fictive temperature, i.e., the temperature at which the super-cooled liquid state turned into a glassy state. In earlier studies, a simple IR method was used to determine the fictive temperature of silica glasses, both bulk and fiber. In the present study the applicability of the same technique for thin amorphous silica films on silicon was examined. It was found that the IR absorption as well as reflection peak wavenumber of the silica structural band can be used to determine the fictive temperature of amorphous silica films on silicon with an unknown thermal history. Specifically, IR absorbance spectra of an amorphous silica film of thickness greater than 0.5 μm grown on silicon can be taken before and after etching a thin surface layer of 20–30 nm and the peak wavenumber of the difference signal can be compared with the pre-determined calibration curve to convert the peak wavenumber to the fictive temperature. For a film thicker than ∼2 μm, IR reflection peak wavenumber can be converted directly to the fictive temperature of the film by using the calibration curve.  相似文献   

4.
B. Kühn  R. Schadrack 《Journal of Non》2009,355(4-5):323-326
A matrix of synthetic fused silica samples with OH contents from 30 to 1300 ppm and of a fictive temperature from 1000 to 1300 °C has been characterized regarding their thermal expansion with high precision. The thermal expansion increases with fictive temperature and drops with OH content. Although fictive temperature and OH are coupled due to the influence of OH on the relaxation of the network, an independent influence of the OH content on thermal expansion has been observed. This may provide a deeper insight into the impact of impurities incorporated into the fused silica network.  相似文献   

5.
《Journal of Non》2006,352(32-35):3451-3456
The characteristics of mesoporous silica prepared at different temperatures and the behavior of this system relating to the microencapsulation of a model drug were investigated. The preparation of mesoporous materials was initiated with the dissolution of a surfactant in distilled water and strong acid medium. After this, tetraethyl orthosilicate was added under agitation. The mixture was heated for 24 h at the synthesis temperature (60 °C, 80 °C, 100 °C and 130 °C) under static conditions. The surfactant was removed by calcination, which was carried out by increasing the temperature to 550 °C for 5 h. Atenolol was used as a model drug to study the kinetics of drug delivery. It could be observed that aging materials at higher temperatures presents no microporosity, and this influences the control of the release of the model drug.  相似文献   

6.
Absorption spectra of high-purity silica, in which 1.2% or 3.0% oxygen atoms are replaced by nitrogen, are measured in the spectral interval of 3.0–6.5 eV. Photoinduced changes of these spectra when exposed to 193 nm wavelength excimer laser radiation, pulse intensity being ~50 mJ/cm2, are examined. Absorption spectra relaxation under subsequent annealing as well as changes brought about by saturation of glass with molecular hydrogen are studied. Parts of graded-index fiber ~1 mm in length and 200 μm thick transverse slices of a fiber preform served as samples. It is found that exposure of fiber samples to laser irradiation brings about a significant decrease of initially more intense absorption band of Si-ODC in the region of 5.0 eV and an increase of initially less intense band centered at 5.8 eV at a time. In bulk samples correlation of these bands is opposite, photoinduced changes are less expressed against structureless absorption tail increase in the spectral interval of 3.0–6.5 eV. It is shown that subsequent 20 min 700 °С annealing leads to the relaxation of photoinduced changes in absorption spectra in bulk and fiber samples. By placing irradiated samples into molecular hydrogen atmosphere at room temperature absorption bands are suppressed and transparency at shorter wavelengths of UV region is increased. Data obtained is discussed in the context of photosensitivity of nitrogen-doped silica-core fibers, which serve a technological platform for thermoresistant in-fiber Bragg gratings fabrication.  相似文献   

7.
《Journal of Non》2007,353(5-7):559-563
Vacuum ultraviolet absorption experiments were carried out on a variety of specimens of amorphous silica β-irradiated at different doses from ∼103 to 5 × 106 kGy. Changes in the width of the absorption (Urbach) edge were investigated. These changes strongly depend on the kind of silica considered: in particular the Urbach energy of silica of industrial manufacture increases in the irradiated samples, whereas in sol–gel silica it is poorly influenced by the irradiation. The fictive temperature of the different materials before and after irradiation was also monitored. The changes of the Urbach energy and of the fictive temperature are tentatively discussed considering the disorder degree induced by irradiation.  相似文献   

8.
Jeremy Thurn 《Journal of Non》2008,354(52-54):5459-5465
The diffusion of water in silica coatings deposited by evaporation and physical vapor deposition (sputtering) is studied using the substrate curvature measurement technique. The diffusion of water into the coatings induced a swelling, which in turn caused bending (curvature) of the silicon substrate. The curvature change was measured in situ during a humidity increase from 0% to 95% at room temperature. The diffusivity of water in the sputtered silica coating was measured to be 10 × 10?12 cm2/s and achieved equilibrium in about 10 min. The diffusion of water in the evaporated silica coating achieved equilibrium in about 2 min. Because the coatings exhibited very short equilibration times, the impact of a non-instantaneous humidity change on the calculated diffusion coefficients was also examined.  相似文献   

9.
《Journal of Non》2007,353(47-51):4384-4389
Lithium manganese spinels Li1+xMn2−xO4, 0  x  0.33, were prepared by wet chemistry technique followed by heat-treatment at 750 °C or 800 °C. Differential scanning calorimetry was used to reveal phase transitions. Electrical properties were studied by impedance spectroscopy. LiMn2O4 exhibited phase transition below room temperature. The transition, seen as an exothermic event in DSC and a steep decrease of conductivity upon cooling, was sharp in sample sintered at 800 °C and broadened over a range of temperature in sample sintered at 750 °C. In the low temperature phase of LiMn2O4, two relaxations of similar strength were observed in the frequency dependent permittivity. The low frequency process was identified as relaxation of charge carriers since the relaxation frequency followed the same temperature dependence as the dc conductivity. The high frequency process exhibited milder temperature dependence and was attributed to dipolar relaxation in the charge-ordered structure. The dipolar relaxation was barely visible in Li substituted samples, x  0.05, which did not undergo structural phases transition. Measurements extended to liquid nitrogen temperature showed gradual lowering of the activation energy of conductivity and relaxation frequencies, behavior typical for phonon-assisted hopping of small polarons.  相似文献   

10.
11.
《Journal of Non》2007,353(32-40):3169-3173
The sound absorption has been measured for molten AgCl–AgI mixtures to investigate the relation between the dynamic properties and chemical bonding. The sound absorption for molten AgI shows a large value just above the melting temperature, and decreases with increasing temperature. The sound absorption for molten mixtures around the eutectic composition increases with temperature from the melting point, showing maximum value around 580 °C, and decreases with increasing temperature. The frequency dependence of the sound absorption for molten AgI and mixtures are also measured, and the relaxation time and relaxation strength are evaluated from the observed data by assuming single Debye-type relaxation process. The evaluated relaxation time for molten AgI is about 9.0 ns just above melting temperature and decreases slightly with temperature to about 6.4 ns at 750 °C. This relaxation time corresponds to a quite slow motion compared with the ordinary atomic one, and may suggest a structural relaxation of atomic association between ionic and covalent character. In the mixture around the eutectic region, evaluated relaxation time shows a rather complicated temperature dependence. Those values decreases slightly with temperature from the melting temperature, and have a minimum value around 600 °C, and then slightly increase with the temperature.  相似文献   

12.
The luminescence of silica glass, prepared by plasma chemical vapor deposition (PCVD) and quartz glass of type IV (trade mark KS-4V) methods, were studied while irradiated with pulses of ArF laser (193 nm) light in the range of sample temperatures between 10 and 300 K. The samples contain less than 0.1 ppm metallic and hydroxyl impurities. The samples synthesized by PCVD were of two kinds. The first one (amorphous) was as-deposited from plasma at a substrate tube temperature of ~1200 °C. The second one (fused) was prepared from the first by the tube collapsing with an external burner. In this process, a section of the substrate tube with the deposited glass was installed in a lathe and processed at a temperature of ~2100 °C during ~20 min until the tube was transformed to a rod. After such processing, the rod was cooled down to room temperature in air at an average rate of about 400 °C per min. The only observed luminescence possesses two broad bands, with not well defined position, one at 2.6–2.9 eV (a blue band) and another in the range of 4.4 eV (an UV band). There is a correspondence in luminescence properties between KS-4V silica and fused PCVD silica. Those bands have been attributed to oxygen deficient centers (ODC). No luminescence is observed in amorphous PCVD silica under irradiation with 193 nm laser light. So, formation of the sample by melting at least stimulates formation of ODCs at 193 nm. The blue band decays obeys to power law ~t?1 and is detected in the range of time 10 ns to 300 μs. The UV band possesses a fast, practically repeating excitation pulse, and a slow component (~30 μs). The obtained new kinetics data are compared with known in literature for lone twofold-coordinated silicon having exponential decay for the blue band equal to 10 ms and 4.5 ns for the UV band. That shows the blue band of new studied samples under ArF laser possesses decay component faster and the UV band slower than that of the twofold-coordinated silicon center. This corresponds to the recombination process of luminescence excitation by laser. We propose a model of the processes as charge separation under excitation with creation of a nearest self-trapped hole and electron trapped on the twofold-coordinated silicon, modified by its surrounding atoms or ions. This pair is recombining then with luminescence.  相似文献   

13.
Using argon as a diluent of Silane, hydrogenated amorphous and nanorocrystalline silicon films Si:H were prepared by radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD). The deposition rate and crystallinity varying with the deposition pressure and rf power, were systematically studied. Structural analysis (Raman scattering spectroscopy and X-ray diffraction), combined with optical measurements spectroscopy were used to characterize the films. The argon dilution of silane for all samples studied was 95% by volume, and the substrate temperature was 200 °C. The deposition pressure was varied from 400 mTorr to 1400 mTorr and varying rf power from 50 to 250 W. The structural evolution studies, shows that beyond 200 W of rf power, an amorphous-nanocrystalline transition was observed, with an increase in crystalline fraction by increasing rf power and working pressure. The films were grown at high deposition rates. The deposition rates of the films near the amorphous-nanocrystalline phase transition region were found in the range 6–10 Å/s. A correlation between structural and optical properties has been found and discussed.  相似文献   

14.
《Journal of Non》2007,353(24-25):2436-2442
Alumina cryogels with a dopant of silica in the content range of 0–10 wt% were synthesized from aqueous boehmite sol through the sol-gel technique and subsequent freeze drying. The higher thermal stability was achieved by the addition of 10 wt% silica; a γ-Al2O3 phase still remained after heating at 1200 °C for 5 h, and the surface area and pore volume were 47 m2 g−1 and 105 mm3 g−1, respectively. The marked stability was ascribed to the synergetic effect of the very low bulk density (0.05 g cm−3) and the dopant. The thermal stability was lower for the cryogels than for the corresponding aerogels; however, it was also suggested that cryogel was highly durable in water in contrast to aerogel.  相似文献   

15.
《Journal of Non》2006,352(26-27):2818-2828
Ceramic fiber products specially alumina mat because of low thermal conductivity and high melting point are used as high temperature insulating materials. Alumina has so high melting point (Tm > 2040 °C) that its mat can be produced through sol–gel method. In this research alumina mat has been manufactured by sol–gel spinning method using our laboratory-designed centrifugal spinneret. The desired viscosity of sol for spinning is 150 P. Phase transformation of the product begins at 600 °C and there is not any amorphous phase at 800 °C and theta alumina (θ-Al2O3) is the main phase. In this work, transformation of transitional phase to alpha alumina (α-Al2O3) takes place from 1000 °C to 1200 °C. The optimum percent of silica in alumina mat is 4 wt%. Fibers constitute network structure that their average diameter is about 10 μm and contains very fine grains (100 nm). The silica percent concerning the limits of this study (<10 wt%) does not effect on fiber diameter, but grain size decreases from about 200 nm to less than 100 nm while increasing silica percent.  相似文献   

16.
《Journal of Non》2007,353(16-17):1540-1545
In this study, the failure resistance of soda-lime-silica glass was increased by surface treatment with sol–gel silica. Samples annealed and ion-exchanged in KNO3 for 24 h at 450 °C were considered. Sol–gel silica coating was carried out by dipping the glass samples into a sol suspension prepared by hydrolysis of Si(OEt)4 in ethanol/water solution. The deposited layer was consolidated in air for 24 h and subjected to mild thermal treatment at 300 °C for 1 h. The surface treatment increased the fracture resistance of annealed glass of about 35 MPa; conversely, ion-exchanged specimens showed an average increase of about 90 MPa. The strengthening effect induced by the surface treatment was attributed to the reduction of the effective crack length generated by the silica coating. The different strength increase between annealed and ion-exchanged samples is discussed in terms of fracture toughness which, for ion-exchanged glass, is not constant, due to the presence of the surface residual stresses and thus the reduction of the crack length due to the silica coating determines a higher strength increase than for annealed glass.  相似文献   

17.
Volume and enthalpy relaxation studies of amorphous Se have been performed in the glass transition region by mercury dilatometry and differential scanning calorimetry. For simple temperature jump experiments, as well as for more complex thermal history the volume and enthalpy relaxation data can be described by a single set of kinetic parameters for Tool-Naraynaswamy-Moynihan (TNM) model [Δh1/R = 42.8 kK, ln(ATNM/s) = ?133]. Slightly different non-linearity and non-exponentiality parameter were found for volume [x = 0.42, β = 0.58] and enthalpy [x = 0.52, β = 0.65] relaxation data. Similar results were obtained also for Adam-Gibbs-Scherer (AGS) model. The activation energy of viscous flow in the glass transition range is identical with the effective activation energy for relaxation process. A self-consistent data evaluation shows that at moderate departure from equilibrium, volume and enthalpy in amorphous selenium relax in the same way as expressed by TNM and AGS models. Both volume and enthalpy change can be interpreted within the same fictive temperature concept.  相似文献   

18.
Dengteng Ge  Lili Yang  Yao Li  JiuPeng Zhao 《Journal of Non》2009,355(52-54):2610-2615
Silica aerogel/epoxy composite was prepared by dry mixing hydrophobic aerogels with epoxy powders and heat pressing method. The composite materials show a serviceability temperature up to 250 °C with low thermal conductivity (0.11–0.044 W/m k) and hydrophobic property (water contact angle of 117–140°). Transmission electron microscope photos proved that part of silica aerogels nanopores had been immersed by epoxy. Based on this phenomenon, an immersion model was build up to study the effect of immersion on the thermal insulation and hydrophobic properties. In addition a thermal conductivity prediction equation of aerogel/polymer system was obtained and confirmed by comparing the experimental data.  相似文献   

19.
Wet and dry silica oxide layers have been treated thermally up to Ta = 1300 °C and were investigated by cathodoluminescence (CL) spectroscopy. Whereas the dry oxides after high temperature treatment show an increase of the yellow–red spectra region, contrary, in wet oxides the UV–blue region is enhanced. Even a new strong band in the near-UV region (NV) at 330 nm (3.76 eV) is found for wet oxides at liquid nitrogen temperature (LNT), but much broader and with lower intensity for room temperature (RT) in a triple band structure UV: 290 nm, NV: 330 nm, and V: 400 nm. These violet bands should be associated with a thermally decomposed and rapidly cooled-down silica network in presence of OH groups or even dissociated oxygen. Additional oxygen implantation into dry silica with high doses up to 1017 ions/cm2 and high thermal treatment T > 1100 °C leads as well to enhanced UV–NV–V luminescence emission bands supporting the fact that oxygen and structural decomposition play a decisive role in formation of near-UV luminescent defects in silica.  相似文献   

20.
《Journal of Non》2006,352(38-39):4030-4033
The removal of hydroxyl from silica glass produced by melting quartz powder under an atmosphere containing hydrogen was investigated. After heat-treatment at the temperature range (700–1200 °C) in nitrogen atmosphere, the effective hydrogen diffusion coefficients were evaluated based on the law of nonsteady-state diffusion. The activation energy obtained is 254 kJ mol−1 for the dehydroxylation process in the heat-treatment temperature range of 700–900 °C, and a different activation energy calculated is 32 kJ mol−1 in the temperature range of 900–1200 °C. The activation energies for the dehydroxylation process at the temperature (700–900 °C) and the higher temperature (900–1200 °C) correspond to the binding energy of SiO–H bond and the activation energy for the diffusion of hydrogen in silica glass respectively, which indicate there is a change of mechanism for dehydroxylation with heat-treatment temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号