首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The O-H stretching region of the infrared spectra of a series of carboxylic acids in Xe matrices was investigated as a function of temperature. Upon increasing the temperature, the νO-H band site-components undergo reversible frequency blue-shifts, which are larger for the lowest-frequency components. This unprecedented observation indicates both that different types of O-H[middle dot][middle dot][middle dot]Xe specific interactions occur, depending on different trapping sites, and the prevalence of stronger interactions of this type for molecules trapped in sites corresponding to lower frequency νO-H band site-components. These results are in agreement with previous investigations pointing to an increased stabilization and larger νO-H frequency red-shifts in carboxylic acid∕Xe complexes bearing a specific H-bond like O-H[middle dot][middle dot][middle dot]Xe interaction. O-H[middle dot][middle dot][middle dot]Xe interaction energies were obtained theoretically and also estimated from the spectroscopic data. Changes in the interaction energies upon temperature variation were also evaluated.  相似文献   

2.
The change in the conformation of the flexible O-CH2-CH2-CH2-O segment of poly(trimethylene terephthalate) (PTT) monofilament caused by drawing was investigated by means of the gamma-gauche effect on the 13C solid-state NMR chemical shift of the internal methylene carbon, combined with the NMR relaxations. The conformation around the O-CH2 and CH2-O bonds for as-spun fiber was trans/trans. On drawing, followed by heat treatment, the conformation changed to gauche/gauche. The ratio of gauche/gauche to trans/trans for the drawn PTT fiber was determined quantitatively.  相似文献   

3.
Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More accurate energies were obtained for the CASSCF structures with the MRMP2/aug-cc-pVDZ method. An important and necessary aspect of the calculations was the need to use different CASSCF active spaces for the different reaction paths on the investigated PESs. The CASSCF calculations focused on O(2)+C(2)H(4) addition to form the C(2)H(4)O(2) biradical on the triplet and singlet surfaces, and isomerization reaction paths ensuing from this biradical. The triplet and singlet C(2)H(4)O(2) biradicals are very similar in structure, primarily differing in their C-C-O-O dihedral angles. The MRMP2 values for the O(2)+C(2)H(4)→C(2)H(4)O(2) barrier to form the biradical are 33.8 and 6.1 kcal/mol, respectively, for the triplet and singlet surfaces. On the singlet surface, C(2)H(4)O(2) isomerizes to dioxetane and ethane-peroxide with MRMP2 barriers of 7.8 and 21.3 kcal/mol. A more exhaustive search of reaction paths was made for the singlet surface using the UB3LYP/aug-cc-pVDZ theory. The triplet and singlet surfaces cross between the structures for the O(2)+C(2)H(4) addition transition states and the biradical intermediates. Trapping in the triplet biradical intermediate, following (3)O(2)+C(2)H(4) addition, is expected to enhance triplet→singlet intersystem crossing.  相似文献   

4.
The identity of the metal-organic framework formed by Mn(ii) and 4,4[prime or minute]-dicarboxy-2,2[prime or minute]-bipyridine (H(2)dcbp) depends upon the predominant solvent employed in the synthesis and yields the robust network isomers [[Mn(dcbp)][middle dot]1/2DMF](n), and [[Mn(dcbp)][middle dot]2H(2)O](n), which possess vastly different physical properties: irretrievably binds DMF, whereas reversibly binds water whilst retaining crystallinity.  相似文献   

5.
An MP2 ab initio study of the interaction between a H(2)O molecule and trans-[Pt(OH)(2)(NH(3))(2)] revealed a HO-H small middle dot small middle dot small middle dotPt(II) hydrogen bond (see picture) with a strong dispersion component (ca. 4 kcal mol(-1)). This dispersion interaction is independent of the charge on the complex and is likely to be ubiquitous in aqueous solutions of Pt(II) complexes.  相似文献   

6.
Despite the fact that the transition structure of the gas phase S(N)2 reaction H(2)O + HOOH(2)(+)--> HOOH(2)(+)+ H(2)O is well below the reactants in potential energy, the reaction has not yet been observed by experiment. Variational transition state RRKM theory reveals a strong preference for the competing proton transfer reaction H(2)O + HOOH(2)(+)--> H(3)O(+)+ HOOH due to entropy factors. Born-Oppenheimer reaction dynamics simulations confirm these results. However, by increasing the collision energy to around 7.5 eV the probability for nucleophilic substitution increases relative to proton transfer. These observations are explained by the presence of the key common intermediate HOO(H)[dot dot dot]H-OH(2)(+) which leads to effective proton transfer, but can be avoided with increasing collision energy. However, the S(N)2 probability remains below 0.2 since successful passage through the TS requires optimum initial orientation of the reactants, excitation of the relative translational motion and good phase correlation between the O-O vibration and the motion of the incoming water.  相似文献   

7.
Quantum mechanical calculations using restricted and unrestricted B3LYP density functional theory, CASPT2, and CBS-QB3 methods for the dimerization of 1,3-cyclohexadiene (1) reveal several highly competitive concerted and stepwise reaction pathways leading to [4 + 2] and [2 + 2] cycloadducts, as well as a novel [6 + 4] ene product. The transition state for endo-[4 + 2] cycloaddition (endo-2TS, DeltaH(double dagger)(B3LYP(0K)) = 28.7 kcal/mol and DeltaH(double dagger)(CBS-QB3(0K)) = 19.0 kcal/mol) is not bis-pericyclic, leading to nondegenerate primary and secondary orbital interactions. However, the C(s) symmetric second-order saddle point on the B3LYP energy surface is only 0.3 kcal/mol above endo-2TS. The activation enthalpy for the concerted exo-[4 + 2] cycloaddition (exo-2TS, DeltaH(double dagger)(B3LYP(0K)) = 30.1 kcal/mol and DeltaH(double dagger)(CBS-QB3(0K)) = 21.1 kcal/mol) is 1.4 kcal/mol higher than that of the endo transition state. Stepwise pathways involving diallyl radicals are formed via two different C-C forming transition states (rac-5TS and meso-5TS) and are predicted to be competitive with the concerted cycloaddition. Transition states were located for cyclization from intermediate rac-5 leading to the endo-[4 + 2] (endo-2) and exo-[2 + 2] (anti-3) cycloadducts. Only the endo-[2 + 2] (syn-3) transition state was located for cyclization of intermediate meso-5. The novel [6 + 4] "concerted" ene transition state (threo-4TS, DeltaH(double dagger)(UB3LYP(0K)) = 28.3 kcal/mol) is found to be unstable with respect to an unrestricted calculation. This diradicaloid transition state closely resembles the cyclohexadiallyl radical rather than the linked cyclohexadienyl radical. Several [3,3] sigmatropic rearrangement transition states were also located and have activation enthalpies between 27 and 31 kcal/mol.  相似文献   

8.
Propofol (2,6-di-isopropylphenol) is probably the most widely used general anesthetic. Previous studies focused on its complexes containing 1 and 2 water molecules. In this work, propofol clusters containing three water molecules were formed using supersonic expansions and probed by means of a number of mass-resolved laser spectroscopic techniques. The 2-color REMPI spectrum of propofol[middle dot](H(2)O)(3) contains contributions from at least two conformational isomers, as demonstrated by UV/UV hole burning. Using the infrared IR/UV double resonance technique, the IR spectrum of each isomer was obtained both in ground and first excited electronic states and interpreted in the light of density functional theory (DFT) calculations at M06-2X/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels. The spectral analysis reveals that in both isomers the water molecules are forming cyclic hydrogen bond networks around propofol's OH moiety. Furthermore, some evidences point to the existence of isomerization processes, due to a complicated conformational landscape and the existence of multiple paths with low energy barriers connecting the different conformers. Such processes are discussed with the aid of DFT calculations.  相似文献   

9.
The triplet-state reactions of 1,4-pentadiene have been investigated using density functional theory (UB3LYP) and ab initio (CASSCF) calculations with a 6-31G basis set. Intramolecular [2 + 2] photocycloadditions and three different reaction pathways leading to vinylcyclopropane have been examined. The computed results are in good agreement with the experimental observations, predicting the dominant product to be vinylcyclopropane produced by a di-pi-methane rearrangement, and the favored [2 + 2] cycloaddition product to be bicyclo[2.1.0]pentane. Reaction pathways involving initial C-C or C-H bond cleavage were found to be too high in energy to be significant. Both the [2 + 2] cycloadditions and the di-pi-methane rearrangement proceed through cyclic biradical intermediates formed on the triplet surface. The relative rates of formation of these triplet biradicals are found to depend on three factors: biradical stability, the geometry of the transition structure, and orbital interactions through bonds.  相似文献   

10.
11.
Bis(hexafluoroacetylacetonato(hfac))manganese(II) coordinated with di(4-pyridyl)phenylcarbene, Mn(II)(hfac)(2)[di(4-pyridyl)phenylcarbene] (1a) and its copper analogue Cu(II)(hfac)(2)[di(4-pyridyl)phenylcarbene] (2a) have attracted great interest from the viewpoint of photoinduced magnetism. The complexes 1a and 2a are regarded as the new d-pi-p conjugated systems containing transition metal ion and carbene as spin sources. The magnetic measurements demonstrated antiferromagnetic and ferromagnetic effective exchange interactions for 1a and 2a, respectively. Here, we have performed UHF and UHF plus DFT hybrid calculations (UB3LYP) to elucidate the nature of the through-bond effective exchange interaction between Mn(II) (or Cu(II)) ion and triplet carbene sites in 1a (or 2a) and their model complexes. The natural orbital analysis of the UHF and UB3LYP solutions and CASCI calculations for the simplest models of 1a and 2a are performed to elucidate relative contributions of spin polarization (SP) and spin delocalization (SD) (or superexchange (SE)) interactions for determination of the sign of J(ab) values. Mn(II) carbene complex 1a shows an antiferromagnetic interaction because of the pi-type antiferromagnetic SE effect and the pi-type SP effect, while the positive J(ab) value for Cu(II) carbene complex 2a can be explained by the fact that ferromagnetic SE and SP interactions due to orbital orthogonality are more effective than the sigma-type antiferromagnetic SE interaction. The ligand coordination effects of both 4-pyridylcarbene and hfac play crucial roles for determination of the J(ab) values, but the ligand coordination effect of hfac is more important for the active control of charge or spin density distributions than that of 4-pyridylcarbene. The spin alignment mechanisms of 1a and 2a are indeed consistent with SE plus SP rule, which is confirmed with the shape and symmetry of natural orbitals, together with charge and spin density distributions.  相似文献   

12.
Quasiclassical direct dynamics trajectories, calculated at the MP2/6-31G level of theory, are used to study the central barrier dynamics for the C1(-) + CH(3)Cl S(N)2 reaction. Extensive recrossings of the central barrier are observed in the trajectories. The dynamics of the Cl(-)-CH(3)Cl complex is non-RRKM and transition state theory (TST) is predicted to be an inaccurate model for calculating the Cl(-) + CH(3)Cl S(N)2 rate constant. Direct dynamics trajectories also show that Cl(-) + CH(3)Cl trajectories, which collide backside along the S(N)2 reaction path, do not form the Cl(-)-CH(3)Cl complex. This arises from weak coupling between the Cl(-)-CH(3)Cl intermolecular and CH(3)Cl intramolecular modes. The trajectory results are very similar to those of a previous trajectory study, based on a HF/6-31G* analytic potential energy function, which gives a less accurate representation of the central barrier region of the Cl(-) + CH(3)Cl reaction than does the MP2/6-31G* level of theory used here. Experiments are suggested for investigating the non-RRKM and non-TST dynamics predicted by the trajectories.  相似文献   

13.
A series of crystalline salts based on the [M(dto)2]2- (dto = 1,2-dithiooxalate, M = Ni, Pt, Cu) dianion with hydrogen-bond donor cations have been synthesised following a molecular tectonics approach. The chelating M(dto)[dot dot dot]HN supramolecular synthon has been exploited in a systematic study of its robustness. The effects of competition between hydrogen-bond acceptors, of the shape and functionality of the cations and of varying the metal in the anion are discussed. The preparation and structural characterisation of the new crystalline phases [4,4'-H(2)bipy][Pt(dto)2] (2), [HNC5H4CO2H-4]2[Pt(dto)2] (5), [HNC5H4CO2H-3]2[Pt(dto)2] (6), [HNC5H4CH2CO2H-4]2[Ni(dto)2] (7), [HNC(5)H(4)CH(2)CO(2)H-3]2[Ni(dto)2] (8), [HNC5H4CONH2-4]2[Ni(dto)2] (9), [HNC5H4CHNOH-4]2[Ni(dto)2] (10), [HNC5H4CHNOH-3]2[Ni(dto)2] (11), [4,4'-H2bipip][Ni(dto)2] (12), [H2NC5H9CO2H-4]2[Pt(dto)2] (12), [H2NC5H9CO2H-4]2[Cu(dto)2] (14), [H2NC5H9CO2H-3]2[Ni(dto)2][H2O]2 (15), [H2NC5H9CO2H-3]2[Pt(dto)2][H2O]2 (16), [H2NC5H9CO2H-3]2[Cu(dto)2][H2O]2 (17), [H(Me)NC5H9CO2H-4]2[Ni(dto)2][H2O]2 (18) is reported. The charge-assisted NH[dot dot dot]dto synthon is formed in each of compounds 1-20, and is apparently much more robust than the conventional synthons used (such as the carboxylic acid dimer), which have a much lower rate of occurrence. The NH[dot dot dot]dto synthon may be generalised to 3- and 4-pyridinium species and 3- and 4-piperidinium derivatives. In the latter cases branching of the hydrogen-bond networks through the NH2 groups arises. The robustness of the NH...dto synthon allows structures of the form [NH cation]2[M(dto)2] to be regarded as being formed by the packing of neutral supermolecules. Cases of isomorphism (as in 16-18) and latent polymorphism (e.g. in 4 and 6) are noted.  相似文献   

14.
The thermal deazetizations of a series of substituted 2,3-diazabicyclo[2.2.2]oct-2-enes and some simpler model systems have been studied using the UB3LYP/6-31G(d) and CASPT2 methods, with a variety of active spaces. A fused cyclopropane exerts unique control on the mechanism and rate of deazetization. When the Walsh sigma-orbitals are appropriately aligned in an exo orientation, a pericyclic three-bond cleavage occurs. For an endo-fused cyclopropane, sequential one-bond cleavages occur to take advantage of orbital overlap with the Walsh orbitals. In systems lacking strongly directing substituents, concerted two-bond cleavage pathways to form diradical intermediates have a small enthalpic advantage (DeltaH(0K)++) over sequential one-bond cleavage pathways. However, the one-bond mechanism has an entropic advantage over the two-bond; consequently, at 400-500 K where decomposition occurs, one-bond and two-bond diradical cleavages both occur simultaneously. The thermal decompositions of trans-azomethane and 2,3-diazabicyclo[2.2.1]hept-2-ene are also studied, and the results are compared to extensive computational studies in the literature. Comparisons of UB3LYP, CASSCF, and CASPT2 surfaces for these reactions are made.  相似文献   

15.
It was commonly thought that a molecular conductor or semiconductor should be composed of at least two components to make the conducting component in partially charged state. However, this idea became questionable by the recent report of the single-component molecular conductor [Ni(tmdt)2]1 as well as several reports about single-component molecular semiconductors such as [Ni(ptdt)2]2 and [Ni(C10H10S8)2]3. In fact, as early as 1985, [Ni(dmit)2] as a by-product in synthesizing TTF[Ni(dmit…  相似文献   

16.
A new method of synthesizing single-component molecular conductor [Ni(dmit)2] bythe reaction 2(Me4N)[Ni(dmit)2]2→ [Ni(dmit)2] (Me4N)[Ni(dmit)2] is reported. [Ni(dmit)2]exhibits a semiconductive behavior above 167 K, while from 167 K down to the measuring limit of 60 K, it exhibits metallic conductivity.  相似文献   

17.
The orbital symmetry forbidden thermal electrocyclic equilibria between a series of cyclophanedienes and dimethyldihydropyrenes (CPD<==>DDPs) were studied using density functional theory (DFT). These reactions are important not only because of their fundamental interest but also in how they restrict the potential utility of the DDP photoswitches by limiting the thermal lifetime of the CPDs. The transition states (TSs) for these reactions could not be modeled using restricted DFT (RB3LYP) but were located using unrestricted DFT (UB3LYP). Each TS possesses significant biradical character as indicated by their spin contaminated wave functions, S2 not = 0. Specific substitution by nitrile or trifluoromethyl group(s) is predicted to strongly affect the magnitude of the activation barriers for these reactions. In particular, replacing the internal methyl groups of the CPDs/DDPs with nitrile groups is predicted to have the maximum effect and to raise the activation barriers and lifetimes of the CPDs considerably.  相似文献   

18.
The sequential rearrangement reaction mechanism of the 2-allyl-2,4,5-hexatrienaldehyde has been studied at the unrestricted Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional (UB3LYP)/6-31G**, Complete Active Space Self-Consistent Field (CAS (8,8))/6-31G**, Configuration Interaction with Single and Double Excitations (CISD)//UB3LYP/6-31G** and the second-order perturbation theory based on the CASSCF reference wave function (CASPT2)//CAS(8,8)/6-31G** levels. Two pathways have been found to be involved for this reaction. The first pathway includes four processes of the rotation of the C3--C4 single bond, the stepwise [2 + 2] cycloaddition, the [1,5]-hydrogen migration, and the ring opening isomerization, while the second pathway undergoes only two processes of the [1,5]-hydrogen migration and the 8pi-electrocyclization. The calculation results indicate that the second pathway is favorable, in good agreement with the recent experimental observation. The whole reaction is stepwise and strong exothermic.  相似文献   

19.
The ground- (S0) and lowest triplet-state (T1) pathways associated with dimerization of cyclohexadiene to give [2+2] and [4+2] cycloadducts have been theoretically studied at the UBLYP and UB3LYP levels of theory with the 6-31G* basis set. The DFT energies were validated by CCSD(T) single-point energy calculations. These cycloaddition reactions follow stepwise mechanisms with formation of bis-allylic biradical (BB) intermediates. In the S0 ground state, the interaction between two cyclohexadiene molecules with formation of BB intermediate IN(S0) has a large activation enthalpy of 32.0 kcal mol(-1). On the other hand, C-C bond-formation in the lowest triplet state (T1) leading to BB intermediate IN(T1) has a low activation enthalpy of 5.0 kcal mol(-1), but the subsequent ring closure involves a very large activation enthalpy of 43.4 kcal mol(-1). Triplet-to-singlet intersystem crossing from IN(T1) to IN(S0) favors cyclization to give the corresponding [2+2] and [4+2] cycloadducts.  相似文献   

20.
New cationic, square-planar, ethene complexes [(Rbpa)RhI(C2H4)]+ [2a]--[2c]+ (Rbpa = N-alkyl-N,N-di(2-pyridylmethyl)amine; [2a]+: alkyl =R=Me; [2b]+: R = Bu; [2c]+: R = Bz) have been selectively oxygenated in acetonitrile by aqueous hydrogen peroxide to 2-rhoda(III)oxetanes with a labile acetonitrile ligand, [(Rbpa)RhIII(kappa2-C,O-CH2CH2O-)(MeCN)]+, [3a]+-[3c]+. The rate of elimination of acetaldehyde from [(Rbpa)RhIII(kappa2-C,O-CH2CH2O-)(MeCN)]+ increases in the order R = Me< R = Bu< R = Bz. Elimination of acetaldehyde from [(Bzbpa)RhIII(kappa2-C,O-CH2CH2O)(MeCN)]+ [3c]+, in the presence of ethene results in regeneration of ethene complex [(Bzbpa)RhI(C2H4)]+ [2c]+, and closes a catalytic cycle. In the presence of Z,Z-1,5-cyclooctadiene (cod) the corresponding cod complex [(Bzbpa)RhI(cod)]+ [6c]+ is formed. Further oxidation of [3c]+ by H2O2 results in the transient formylmethyl-hydroxy complex [(Bzbpa)RhIII(OH)[kappa1-C-CH2C(O)H]]+ [5c]+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号