首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This paper presents the extension of a flexibility-based large increment method (LIM) for the case of cyclic loading. In the last few years, LIM has been successfully tested for solving a range of non-linear structural problems involving elastoplastic material models under monotonic loading. In these analyses, the force-based LIM algorithm provided robust solutions and significant computational savings compared to the displacement-based finite element approach by using fewer elements and integration points. Although in cyclic analysis a step-by-step solution procedure has to be adopted to account for the plastic history, LIM will still have many advantages over the traditional finite element method. Before going into the basic idea of this extension, a brief discussion regarding LIM governing equations is presented followed by the proposed solution procedure. Next, the formulation is specified for the treatment of the elastic perfectly plastic beam element. The local stage for the beam behavior is discussed in detail and the required improvement for the LIM methodology is described. Illustrative truss and beam examples are presented for different non-linear material models. The results are compared with those obtained from a standard displacement method and again highlight the potential benefits of the proposed flexibility-based approach.  相似文献   

2.
The generalized elastic material provides a reference model to cast in a unitary framework many structural models which are based on nonlinear monotone multivalued relations such as viscoelasticity, plasticity and unilateral models. The modified forms of the Hu-Washizu and Hellinger-Reissner principles and the displacement-based variational formulation are recovered for the generalized elastic material starting from a functional in the complete set of state variables. The related limitation principles are derived and their specialization to elasticity and elastoplasticity with mixed hardening are provided. It is shown that the interpolating fields for the pressure and the volumetric strain usually adopted in the B-bar method lead to a limitation principle. Accordingly the same elastic and elastoplastic solutions can be obtained by means of an approximate mixed displacement⧸pressure variational principle. A second application is concerned with the conditions ensuring the coincidence of the solutions between an approximate two-field mixed formulation and the displacement-based method. Numerical examples are provided to show the coincidence of the solutions obtained from different mixed finite element formulations, in elasticity or elastoplasticity, under the validity of the limitation principles.  相似文献   

3.
A complementary-dual force-based finite element formulation is proposed for the geometrically exact quasi-static analysis of one-dimensional hyperelastic perfectly flexible cables lying in the two-dimensional space. This formulation employs as approximate functions the exact statically admissible force fields, i.e., those that satisfy the equilibrium differential equations in strong form, as well as the equilibrium boundary conditions. The formulation relies on a principle of total complementary energy only expressed in terms of force fields, being therefore called a pure principle. Under the assumption of stress-unilateral behavior, this principle can be regarded as being dual to the principle of minimum total potential energy, corresponding therefore to a maximum principle. Some numerical applications, including cables suspended from two and three points at the same level or at different levels, with both Hookean and Neo-Hookean material behaviors, are presented. As it will be shown, in contrast to the standard two-node displacement-based formulation derived from the principle of minimum total potential energy, the proposed dual force-based formulation is capable of providing the exact solution of a given problem only using a single finite element per cable. Both the proposed principle of pure complementary energy and its corresponding force-based finite element formulation can be easily extended to the case of cables lying in the three-dimensional space.  相似文献   

4.
This paper presents a canonical dual mixed finite element method for the post-buckling analysis of planar beams with large elastic deformations. The mathematical beam model employed in the present work was introduced by Gao in 1996, and is governed by a fourth-order non-linear differential equation. The total potential energy associated with this model is a non-convex functional and can be used to study both the pre- and the post-buckling responses of the beams. Using the so-called canonical duality theory, this non-convex primal variational problem is transformed into a dual problem. In a proper feasible space, the dual variational problem corresponds to a globally concave maximization problem. A mixed finite element method involving both the transverse displacement field and the stress field as approximate element functions is derived from the dual variational problem and used to compute global optimal solutions. Numerical applications are illustrated by several problems with different boundary conditions.  相似文献   

5.
A refined non-linear first-order theory of multilayered anisotropic plates undergoing finite deformations is elaborated. The effects of the transverse shear and transverse normal strains, and laminated anisotropic material response are included. On the basis of this theory, a simple and efficient finite element model in conjunction with the total Lagrangian formulation and Newton-Raphson method is developed. The precise representation of large rigid-body motions in the displacement patterns of the proposed plate elements is also considered. This consideration requires the development of the strain-displacement equations of the finite deformation plate theory with regard to their consistency with the arbitrarily large rigid-body motions. The fundamental unknowns consist of six displacements and 11 strains of the face planes of the plate, and 11 stress resultants. The element characteristic arrays are obtained by using the Hu-Washizu mixed variational principle. To demonstrate the accuracy and efficiency of this formulation and compare its performance with other non-linear finite element models reported in the literature, extensive numerical studies are presented.  相似文献   

6.
对于大转动、大变形柔性体的刚柔耦合动力学问题,基于李群SE(3)局部标架(local frame formulation, LFF)的建模方法能够规避刚体运动带来的几何非线性问题,离散数值模型中广义质量矩阵与切线刚度矩阵满足刚体变换的不变性,可明显地提高柔性多体系统动力学问题的计算效率. 有限元方法中,闭锁问题是导致单元收敛性能低下的主要原因, 例如梁单元的剪切以及泊松闭锁.多变量变分原理是缓解梁、板/壳单元闭锁的有效手段. 该方法不仅离散位移场,同时离散应力场或应变场, 可提高应力与应变的计算精度. 本文基于上述局部标架,研究几类梁单元的闭锁处理方法, 包括几何精确梁(geometrically exact beam formulation, GEBF)与绝对节点坐标(absolute nodal coordinate formulation, ANCF)梁单元. 其中, 采用Hu-Washizu三场变分原理缓解几何精确梁单元中的剪切闭锁,采用应变分解法缓解基于局部标架的ANCF全参数梁单元中的泊松闭锁. 数值算例表明,局部标架的梁单元在描述高转速或大变形柔性多体系统时,可消除刚体运动带来的几何非线性, 极大地减少系统质量矩阵和刚度矩阵的更新次数.缓解闭锁后的几类局部标架梁单元收敛性均得到了明显提升.   相似文献   

7.
The purpose of this paper is to present an efficient analytic method for obtaining the deformation of thin straight pipes, subjected to prescribed edge displacements or concentrated loads.The approach uses the mixed formulation where unknown functions are combined with trigonometric terms. A variational procedure is used to obtain the system of ordinary differential equations. For the applied load a Fourier approach is used to represent the load as an analytical function. For the prescribed displacement, three solutions for the ovalization are evaluated and a method based on energy contribution of each term is used to obtain their superposition.In contrast to finite element method the proposed method is efficient and can be applied to other boundary condition problems leading to continuous displacement and stress fields with a low number of unknowns. Comparisons with experimental and finite element procedures show good agreement that enhances the merits of the analytical solutions proposed.The value of this method is based on solving the differential equations rather than using commercial codes. So far, the solution of prescribed edge displacements has been limited to one term. This paper discusses how to add further terms using the mixed formulation, thus, presenting a novel procedure.  相似文献   

8.
通过研究广为人知的断裂力学单变量八节点位移裂纹QPE元和Akin族奇异单元法,本文运用经典局部裂纹解析解,与非协调假设应力杂交-混合元列式方法相结合,提出用于分层各向异性材料的多变量半解析假设应力奇异广义杂交/混合裂纹有限元法,能克服现有位移裂纹元法的域应力分布精度低和高次单元所需计算容量大的局限性,互为补充,更有利于结构裂纹扩展分析和应用研究。文中设计了一个半解析奇异裂纹平面单元,各向同性材料板算例验证了退化二次八节点协调位移裂纹元及六节点非协调奇异应力裂纹元,说明采用稀疏及加密单元网格,两类裂纹单元分别从上下逼近收敛于实验和理论参考解,可得到吻合程度较好的1/√r奇异应变和应力分量以及应力强度因子值,表明了本文奇异裂纹单元理论的优越性。  相似文献   

9.
In this paper, general closest point projection algorithm is derived for the elastoplastic behavior of a cross-section of a beam finite element. For given section deformations, the section forces (stress resultants) and the section tangent stiffness matrix are obtained as the response for the cross-section. Backward Euler time integration rule is used for the solution of the nonlinear evolution equations. The solution yields the general closest projection algorithm for stress resultants plasticity model. Algorithmic consistent tangent stiffness matrix for the section is derived. Numerical verification of the algorithms in a mixed formulation beam finite element proves the accuracy and robustness of the approach in simulating nonlinear behavior.  相似文献   

10.
11.
There are some common difficulties encountered in elastic-plastic impact codes such as EPIC[1,2], NONSAP[3] etc. Most of these codes use the simple linear functions usually taken from static problems to represent the displacement components. In such finite element formulation, the strain and stress components are constants in every element. In the equations of motion, the stress components in general appear in the form of their space derivatives. Thus, if we use such form functions to represent the displacement components, the effect of internal stresses to the equations of motion vanishes identically. The usual practice to overcome such difficulties is to establish as self-equilibrium system of internal forces acting on various nodal points by means of transforming equations of motion into variational form of energy relation through the application of virtual displacement principle. The nodal acceleration is then calculated from the total force acting on this node from all the neighbouring elements. The transformation of virtual displacement principle into the variational energy form is performed on the bases of continuity conditions of stress and displacement throughout the integrated space. That is to say, on the interface boundary of finite element, the assumed displacement and stress functions should be conformed. However, it is easily seen that, for linear form function of finite element calculation, the displacement continues everywhere, but not the stress components. Thus, the convergence of such kind of finite element computation is open to question. This kind of treatment has never been justified even in approximation sense. Furthermore, the calculation of nodal points needs a rule to calculate the mass matrix. There are two ways to establish mass matrix, namely lumped mass method and consistent mass method [4]. The consistent mass matrix can be obtained naturally through finite element formulation, which is consistent to the assumed form functions. However, the resulting consistent mass matrix is not in diagonalized form, which is inconvenient for numerical computation. For most codes, the lumped mass matrix is used, and in this case, the element mass is distributed in certain assumed proportions to all the nodal points of this element. The lumped mass matrix is diagonalized with diagonal terms composed of the nodal mass. However, the lumped mass assumption has never been justified. All these difficulties are originated from the simple linear form functions usually used in static problems.In this paper, we introduce a new quadratic form function for elastic-plastic impact problems. This quadratic form function possesses diagonalized consistent mass matrix, and non-vanishing effect of internal stress to the equations of motion. Thus with this kind of dynamic finite element, all above-said difficulties can be eliminated.  相似文献   

12.
An efficient domain/boundary decomposition method is presented for fully coupled thermomechanical problems with contact boundaries. The whole domain is regarded as a union of subdomains, an interface, and contact interfaces. Penalized variational formulations are performed to connect the interface or contact interfaces with the neighboring subdomains that satisfy continuity constraints on the displacement and temperature fields. As a result, non-linear finite element computations due to the contact boundaries can be localized within a few subdomains or contact interfaces. Therefore, the computational efficiency can be enhanced considerably by devising suitable solution algorithms. A variety of numerical examples were tested to confirm the important features of the new algorithms presented.  相似文献   

13.
Shape sensing of 3D frame structures using an inverse Finite Element Method   总被引:1,自引:0,他引:1  
A robust and efficient computational method for reconstructing the elastodynamic structural response of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as “shape sensing”, this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving section strains (also known as strain measures) of Timoshenko theory for stretching, torsion, bending, and transverse shear. The present iFEM methodology is based on strain–displacement relations only, without invoking force equilibrium. Consequently, both static and time-varying displacement fields can be reconstructed without the knowledge of material properties, applied loading, or damping characteristics. Two finite elements capable of modeling frame structures are derived using interdependent interpolations, in which interior degrees of freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. Several example problems involving cantilevered beams and three-dimensional frame structures undergoing static and dynamic response are discussed. To simulate experimentally measured strains and to establish reference displacements, high-fidelity MSC/NASTRAN finite element analyses are performed. Furthermore, numerically simulated measurement errors, based on Gaussian distribution, are also considered in order to verify the stability and robustness of the methodology. The iFEM solution accuracy is examined with respect to various levels of discretization and the number of strain gauges.  相似文献   

14.
A new hybrid finite element formulation is presented for solving two-dimensional orthotropic elasticity problems. A linear combination of fundamental solutions is used to approximate the intra-element displacement fields and conventional shape functions are employed to construct elementary boundary fields, which are independent of the intra-element fields. To establish a linkage between the two independent fields and produce the final displacement-force equations, a hybrid variational functional containing integrals along the elemental boundary only is developed. Results are presented for four numerical examples including a cantilever plate, a square plate under uniform tension, a plate with a circular hole, and a plate with a central crack, respectively, and are assessed by comparing them with solutions from ABAQUS and other available results.  相似文献   

15.
UZAWA TYPE ALGORITHM BASED ON DUAL MIXED VARIATIONAL FORMULATION   总被引:2,自引:0,他引:2  
IntroductionForthesolutionoftheelasticproblem ,themostimportantadvantageofthemixedfiniteelementmethodsliesinthecomputingofstressanddisplacementandsoonsimultaneously .Forthecontactprobleminelasticity ,anewdualmixedvariationalformulationandthecorrespondin…  相似文献   

16.
A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3fl here. Firstly, the theoretical basis of the traditional hybrid-stress elements, i.e., the Hellinger-Reissner variational principle, is replaced by the Hamilton variational principle, in which the number of the stress variables is reduced from 3 to 2. Secondly, three stress parameters and corresponding trial functions are introduced into the system equations. Thirdly, the displacement fields of the conventional bilinear isoparametric element are employed in the new models. Finally, from the stationary condition, the stress parameters can be expressed in terms of the displacement parameters, and thus the new element stiffness matrices can be obtained. Since the required number of stress variables in the Hamilton variational principle is less than that in the Hellinger-Reissner variational principle, and no additional incompatible displacement modes are considered, the new hybrid-stress element is simpler than the traditional ones. Furthermore, in order to improve the accuracy of the stress solutions, two enhanced post-processing schemes are also proposed for element HH4-3β. Numerical examples show that the proposed model exhibits great improvements in both displacement and stress solutions, implying that the proposed technique is an effective way for developing simple finite element models with high performance.  相似文献   

17.
Finite element deflection and stress results are presented for four flat plate configurations and are computed using kinematically approximate (rotation tensor, strain tensor or both) non-linear Reissner-Mindlin plate models. The finite element model is based on a mixed variational principle and has both displacement and force field variables. High order interpolation of the field variables is possible through p-type discretization. Results for some of the higher order approximate models are given for what appears to be the first time. It is found that for the class of example problems examined, exact strain tensor but approximate rotation tensor theories can significantly improve the solution over approximate strain tensor models such as the von Kármán and moderate rotation models when moderate deflections/rotations are present. However, for each of the problems examined (with the exception of a postbuckling problem) the von Kármán and moderate rotation model results compared favorably with the higher order models for deflection magnitudes which could be reasonably expected in typical aeroelastic configurations.  相似文献   

18.
A thermodynamically consistent formulation of nonlocal damage in the framework of the internal variable theories of inelastic behaviours of associative type is presented. The damage behaviour is defined in the strain space and the effective stress turns out to be additively splitted in the actual stress and in the nonlocal counterpart of the relaxation stress related to damage phenomena. An important advantage of models with strain-based loading functions and explicit damage evolution laws is that the stress corresponding to a given strain can be evaluated directly without any need for solving a nonlinear system of equations. A mixed nonlocal variational formulation in the complete set of state variables is presented and is specialized to a mixed two-field variational formulation. Hence a finite element procedure for the analysis of the elastic model with nonlocal damage is established on the basis of the proposed two-field variational formulation. Two examples concerning a one-dimensional bar in simple tension and a two-dimensional notched plate are addressed. No mesh dependence or boundary effects are apparent.  相似文献   

19.
Based on a non-linear mathematical model of lateral buckling of a slender beam with a narrow rectangular cross section, the variational formulation of the two-parametric optimization problem is given in the dimensionless form. An optimal shape is obtained by solving the variational problem using the Rayleigh–Ritz method with the orthogonal system of trigonometric functions. By a partial solution of the Euler–Lagrange differential equation of the variational problem, a proof is given that in the case of the optimal shape, a maximal reference stress according to the total strain energy theory is constant along the beam. An example of extrapolation of the two-parametric optimization problem solution is represented.  相似文献   

20.
Three alternative sets of hybrid formulations to solve linear elastodynamic problems by the finite element method are presented. They are termed hybrid–mixed, hybrid and hybrid–Trefftz and differ essentially on the field conditions that the approximation functions are constrained to satisfy locally. Two models, namely the displacement and the stress models, are obtained for each formulation depending on whether the tractions or the boundary displacements are the field chosen to implement interelement continuity. A Fourier time discretization is used to uncouple the solving system in the frequency domain. The basic space discretization criterion is implemented directly on the fundamental relations of elastodynamics and used to derive the stress and displacement models of the hybrid–mixed formulation. The hybrid and hybrid–Trefftz formulations are presented in sequence as the variants of the hybrid–mixed formulation obtained by progressively increasing the constraints on the approximation bases. Numerical implementation aspects are briefly discussed and the performance of the finite element models is illustrated with numerical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号