首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We study the sensitivity of energy eigenstates to small perturbation in quantum integrable and chaotic systems.It is shown that the distribution of rescaled components of perturbed states in unperturbed basis exhibits qualitative difference in these two types of systems:being close to the Gaussian form in quantum chaotic systems,while,far from the Gaussian form in integrable systems.  相似文献   

3.
The theory of Van Hove for nonequilibrium quantum statistical mechanics is extensively reformulated in terms of a superspace (a kind of operator space). This reformulation enables us to introduce a diagrammatic method which makes it convenient to deal with practical problems in physical systems. In our formalism, quantum statistical effects are considered on the basis of a systematic rule for the contraction technique. A complicated statistical effect in boson or fermion systems can be treated by starting with a simple unsymmetrized formalism in the Boltzmann statistics.  相似文献   

4.
This paper explores the potential of controlling quantum systems by introducing ancillary systems and then performing unitary operation on the resulting composite systems. It generalizes the concept of pure state controllability for quantum systems and establishes the link between the operator controllability of the composite system and the generalized pure state controllability of its subsystem. It is constructively demonstrated that if a composite quantum system can be transferred between any pair of orthonormal pure vectors, then its subsystem is generalized pure-state controllable. Furthermore, the unitary operation and the coherent control can be concretely given to transfer the system from an initial state to the target state. Therefore, these properties may be potentially applied in quantum information, such as manipulating multiple quantum bits and creating entangled pure states. A concrete example has been given to illustrate that a maximally entangled pure state of a quantum system can be generated by introducing an ancillary system and performing open-loop coherent control on the resulting composite system.  相似文献   

5.
A classification of quantum systems into three categories, type I, II and III, is proposed. The classification is based on the degree of sensitivity upon initial conditions, and the appearance of chaos. The quantum dynamics of type I systems is quasi periodic displaying no exponential sensitivity. They arise, e.g., as the quantized versions of classical chaotic systems. Type II systems are obtained when classical and quantum degrees of freedom are coupled. Such systems arise naturally in a dynamic extension of the first step of the Born-Oppenheimer approximation, and are of particular importance to molecular and solid state physics. Type II systems can show exponential sensitivity in the quantum subsystem. Type III systems are fully quantized systems which show exponential sensitivity in the quantum dynamics. No example of a type III system is currently established. This paper presents a detailed discussion of a type II quantum chaotic system which models a coupled electronic-vibronic system. It is argued that type II systems are of importance for any field systems (not necessarily quantum) that couple to classical degrees of freedom.  相似文献   

6.
《Physics letters. A》2020,384(23):126447
Quantum correlations in an entangled many-body system are capable of storing information. Even when the information is injected by a local unitary operation to the system, the entanglement delocalizes it. In a recent study on multiple-qubit systems, it is shown that a virtual qubit defined in the correlation space plays a role of perfect storage of delocalized information, which is called a quantum information capsule (QIC). To enhance the capacity of quantum information storage, it is crucial to formulate the cases for multiple-qudit systems and continuous-variable (CV) systems. We analytically prove that it is possible to construct a QIC for general write operations of the systems. It turns out that the extension to quantum field theory is achievable. For Gaussian states, we explicitly construct a QIC for shift write operations. We analyze the time-evolution of QIC in a CV system to demonstrate the diffusion of information in entangled pure states.  相似文献   

7.
We show that quantum correlations as quantified by quantum discord can characterize quantum phase transitions by exhibiting nontrivial long-range decay as a function of distance in spin systems. This is rather different from the behavior of pairwise entanglement, which is typically short-ranged even in critical systems. In particular, we find a clear change in the decay rate of quantum discord as the system crosses a quantum critical point. We illustrate this phenomenon for first-order, second-order, and infinite-order quantum phase transitions, indicating that pairwise quantum discord is an appealing quantum correlation function for condensed matter systems.  相似文献   

8.
Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained from experimentally generated tomograms and nonclassicality observed from them.  相似文献   

9.
With the development of quantum thermodynamics [1], it turned out that the existence of a thermal equilibrium can be derived directly from quantum mechanics. This finding has raised the question, what other thermodynamic concepts could be applied to quantum systems and how they might emerge from quantum mechanics. Here, we discuss how the concept of work translates to quantum systems and how its emergence can be understood. Moreover, we show that even for small and simple quantum systems, work may be a meaningful concept. We then address the question of work fluctuations in quantum systems. We discuss the Jarzynski relation and its quantum counterparts and we show that corresponding relations hold even for open quantum systems.  相似文献   

10.
Mechanical systems are ideal candidates for studying quantum behavior of macroscopic objects. To this end, a mechanical resonator has to be cooled to its ground state and its position has to be measured with great accuracy. Currently, various routes to reach these goals are being explored. In this review, we discuss different techniques for sensitive position detection and we give an overview of the cooling techniques that are being employed. The latter includes sideband cooling and active feedback cooling. The basic concepts that are important when measuring on mechanical systems with high accuracy and/or at very low temperatures, such as thermal and quantum noise, linear response theory, and backaction, are explained. From this, the quantum limit on linear position detection is obtained and the sensitivities that have been achieved in recent opto- and nanoelectromechanical experiments are compared to this limit. The mechanical resonators that are used in the experiments range from meter-sized gravitational wave detectors to nanomechanical systems that can only be read out using mesoscopic devices such as single-electron transistors or superconducting quantum interference devices. A special class of nanomechanical systems is bottom-up fabricated carbon-based devices, which have very high frequencies and yet a large zero-point motion, making them ideal for reaching the quantum regime. The mechanics of some of the different mechanical systems at the nanoscale is studied. We conclude this review with an outlook of how state-of-the-art mechanical resonators can be improved to study quantum mechanics.  相似文献   

11.
The review considers the peculiarities of symmetry breaking and symmetry transformations and the related physical effects in finite quantum systems. Some types of symmetry in finite systems can be broken only asymptotically. However, with a sufficiently large number of particles, crossover transitions become sharp, so that symmetry breaking happens similarly to that in macroscopic systems. This concerns, in particular, global gauge symmetry breaking, related to Bose–Einstein condensation and superconductivity, or isotropy breaking, related to the generation of quantum vortices, and the stratification in multicomponent mixtures. A special type of symmetry transformation, characteristic only for finite systems, is the change of shape symmetry. These phenomena are illustrated by the examples of several typical mesoscopic systems, such as trapped atoms, quantum dots, atomic nuclei, and metallic grains. The specific features of the review are: (i) the emphasis on the peculiarities of the symmetry breaking in finite mesoscopic systems; (ii) the analysis of common properties of physically different finite quantum systems; (iii) the manifestations of symmetry breaking in the spectra of collective excitations in finite quantum systems. The analysis of these features allows for the better understanding of the intimate relation between the type of symmetry and other physical properties of quantum systems. This also makes it possible to predict new effects by employing the analogies between finite quantum systems of different physical nature.  相似文献   

12.
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.  相似文献   

13.
14.
李俊  崔江煜  杨晓东  罗智煌  潘健  余琦  李兆凯  彭新华  杜江峰 《物理学报》2015,64(16):167601-167601
近年来, 随着量子信息科学的发展, 对由量子力学原理描述的微观世界的主动调控已成为重要的前沿研究领域. 为构造实际的量子信息处理器, 一个关键的挑战是: 如何对处于噪声环境下的量子体系实现一系列高精度的任意操作, 以完成目标量子信息处理任务. 为此, 人们将经典系统控制论的思想方法延伸到量子体系的领域, 提出了大量的量子控制方法以及相关的数值技术(如量子优化控制、量子反馈控制等), 并取得了丰富的研究成果. 核磁共振自旋体系具备成熟的系统理论和操控技术, 为量子控制方法的实用性研究提供了优秀的实验测试平台. 因此, 基于核磁共振的量子控制成为量子控制领域的重要方向. 本文简要介绍了量子控制的基本概念和方法; 从系统控制论的角度对核磁共振自旋体系的基本原理和重要控制任务做了阐述; 介绍了近些年来在该领域发展的相关控制方法及其应用; 对基于核磁共振体系的量子控制的进一步的研究做了几点展望.  相似文献   

15.
In this paper, we formulate limit Zeno dynamics of general open systems as the adiabatic elimination of fast components. We are able to exploit previous work on adiabatic elimination of quantum stochastic models to give explicitly the conditions under which open Zeno dynamics will exist. The open systems formulation is further developed as a framework for Zeno master equations, and Zeno filtering (that is, quantum trajectories based on a limit Zeno dynamical model). We discuss several models from the point of view of quantum control. For the case of linear quantum stochastic systems, we present a condition for stability of the asymptotic Zeno dynamics.  相似文献   

16.
《Physics letters. A》2020,384(24):126611
The characterization of quantum correlations is crucial to the development of new quantum technologies and to understand how dramatically quantum theory departs from classical physics. Here we systematically study single- and multiparticle interference patterns produced by general two- and three-qubit systems. From this we establish on phenomenological grounds a new type of quantum correlation for these systems, which we name quantum interference, deriving some quantifiers that are given explicitly in terms of the density matrix elements of the complete system. By using these quantifiers, we show that, contrary to our expectations, entanglement is not a required property for a composite quantum system to manifest multiparticle interference.  相似文献   

17.
Starting from classical lattice systems ind2 dimensions with a regular zerotemperature phase diagram, involving a finite number of periodic ground states, we prove that adding a small quantum perturbation and/or increasing the temperature produce only smooth deformations of their phase diagrams. The quantum perturbations can involve bosons or fermions and can be of infinite range but decaying exponentially fast with the size of the bonds. For fermions, the interactions must be given by monomials of even degree in creation and annihilation operators. Our methods can be applied to some anyonic systems as well. Our analysis is based on an extension of Pirogov-Sinai theory to contour expansions ind+1 dimensions obtained by iteration of the Duhamel formula.  相似文献   

18.
We present two protocols for the controlled remote implementation of quantum operations between three-party high-dimensional systems. Firstly, the controlled teleportation of an arbitrary unitary operation by bidirectional quantum state teleportaion (BQST) with high-dimensional systems is considered. Then, instead of using the BQST method, a protocol for controlled remote implementation of partially unknown operations belonging to some restricted sets in high-dimensional systems is proposed. It is shown that, in these protocols, if and only if the controller would like to help the sender with the remote operations, the controlled remote implementation of quantum operations for high-dimensional systems can be completed.  相似文献   

19.
An extension of the technique of analogue simulation to the treatment of quantum mechanical systems, based on an analogue variant of the method of stochastic quantization, is reported. The analogue stochastic quantization (ASQ) technique is introduced by application to the quantum harmonic oscillator, a particularly simple system for which all the answers are already known. ASQ measurements of the lowest eigenvalues and eigenfunctions of the latter system are presented and compared with theoretical predictions. The future potential of the ASQ technique in relation to some more complicated quantum systems of topical interest is discussed.  相似文献   

20.
The previously established equivalence of certain multidimensional quantum hamiltonians is shown to be a consequence of the supersymmetry in quantum mechanics. Thereby the supersymmetric quantum mechanics can serve as a regular source of equivalent quantum systems in arbitrary space dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号