首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By considering the identification problem of unknown but fixed Hamiltonian H = S0σ0 +∑i=x,y,z Siσi where σi (i = x, y, z) are pauli matrices and σ0=I, we explore the feasibility and limitation of empirically determining the Hamiltonian parameters for quantum systems under experimental conditions imposed by projective measurements and initialization procedures. It may be unsurprising to physicists that one can not obtain the knowledge of So no matter what kind of projective measurements and initialization are permitted, but the observation draws our attention to the importance of the parameter identifiability under different experimental condition. It has also been revealed that one can obtain the knowledge of |Sz| and Sx^2+Sy^2 at most when only the projective measurement {|0/(0|, |1/(1|} is permitted to perform on and initialize the qubit. Further more, we demonstrated that it is feasible to distinguish |Sx|, |Sy|, and |Sz| even without any a priori information about Hamiltonian if at least two kinds of projective measurement or initialization procedures are permitted. It should be emphasized that both projective measurements and initialization procedures play an important role in quantum system identification.  相似文献   

2.
We study the relation between the centro-affine geometry of star-shaped planar curves and the projective geometry of parametrized maps into RP1. We show that projectivization induces a map between differential invariants and a bi-Poisson map between Hamiltonian structures. We also show that a Hamiltonian evolution equation for closed star-shaped planar curves, discovered by Pinkall, has the Schwarzian KdV equation as its projectivization. (For both flows, the curvature evolves by the KdV equation.) Using algebro-geometric methods and the relation of group-based moving frames to AKNS-type representations, we construct examples of closed solutions of Pinkall’s flow associated with periodic finite-gap KdV potentials.  相似文献   

3.
A projective geometry is an equivalence class of torsion free connections sharing the same unparametrised geodesics; this is a basic structure for understanding physical systems. Metric projective geometry is concerned with the interaction of projective and pseudo-Riemannian geometry. We show that the BGG machinery of projective geometry combines with structures known as Yang–Mills detour complexes to produce a general tool for generating invariant pseudo-Riemannian gauge theories. This produces (detour) complexes of differential operators corresponding to gauge invariances and dynamics. We show, as an application, that curved versions of these sequences give geometric characterizations of the obstructions to propagation of higher spins in Einstein spaces. Further, we show that projective BGG detour complexes generate both gauge invariances and gauge invariant constraint systems for partially massless models: the input for this machinery is a projectively invariant gauge operator corresponding to the first operator of a certain BGG sequence. We also connect this technology to the log-radial reduction method and extend the latter to Einstein backgrounds.  相似文献   

4.
We obtain the correct Hamiltonian which describes the dynamics of classes of asymptotic open Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, which includes Tolman geometries. We calculate the surface term that has to be added to the usual Hamiltonian of General Relativity in order to obtain an improved Hamiltonian with well defined functional derivatives. For asymptotic flat FLRW spaces, this surface term is zero, but for asymptotic negative curvature FLRW spaces it is not null in general. In the particular case of the Tolman geometries, they vanish. The surface term evaluated on a particular solution of Einstein's equations may be viewed as the energy of this solution with respect to the FLRW spacetime they approach asymptotically. Our results are obtained for a matter content described by a dust fluid, but they are valid for any perfect fluid, including the cosmological constant.  相似文献   

5.
The Hamiltonian counterpart of classical Lagrangian field theory is covariant Hamiltonian field theory where momenta correspond to derivatives of fields with respect to all world coordinates. In particular, classical Lagrangian and covariant Hamiltonian field theories are equivalent in the case of a hyperregular Lagrangian, and they are quasi-equivalent if a Lagrangian is almost-regular. In order to quantize covariant Hamiltonian field theory, one usually attempts to construct and quantize a multisymplectic generalization of the Poisson bracket. In the present work, the path integral quantization of covariant Hamiltonian field theory is suggested. We use the fact that a covariant Hamiltonian field system is equivalent to a certain Lagrangian system on a phase space which is quantized in the framework of perturbative quantum field theory. We show that, in the case of almost-regular quadratic Lagrangians, path integral quantizations of associated Lagrangian and Hamiltonian field systems are equivalent.  相似文献   

6.
An exact invariant is derived for n‐degree‐of‐freedom non‐relativistic Hamiltonian systems with general time‐dependent potentials. To work out the invariant, an infinitesimalcanonical transformation is performed in the framework of the extended phase‐space. We apply this approach to derive the invariant for a specific class of Hamiltonian systems. For the considered class of Hamiltonian systems, the invariant is obtained equivalently performing in the extended phase‐space a finitecanonical transformation of the initially time‐dependent Hamiltonian to a time‐independent one. It is furthermore shown that the invariant can be expressed as an integral of an energy balance equation. The invariant itself contains a time‐dependent auxiliary function ξ (t) that represents a solution of a linear third‐order differential equation, referred to as the auxiliary equation. The coefficients of the auxiliary equation depend in general on the explicitly known configuration space trajectory defined by the system's time evolution. This complexity of the auxiliary equation reflects the generally involved phase‐space symmetry associated with the conserved quantity of a time‐dependent non‐linear Hamiltonian system. Our results are applied to three examples of time‐dependent damped and undamped oscillators. The known invariants for time‐dependent and time‐independent harmonic oscillators are shown to follow directly from our generalized formulation.  相似文献   

7.
Certain dissipative systems, such as Caldirola and Kannai’s damped simple harmonic oscillator, may be modelled by time-dependent Lagrangian and hence time dependent Hamiltonian systems with nn degrees of freedom. In this paper we treat these systems, their projective and conformal symmetries as well as their quantisation from the point of view of the Eisenhart lift to a Bargmann spacetime in n+2n+2 dimensions, equipped with its covariantly constant null Killing vector field. Reparametrisation of the time variable corresponds to conformal rescalings of the Bargmann metric. We show how the Arnold map lifts to Bargmann spacetime. We contrast the greater generality of the Caldirola–Kannai approach with that of Arnold and Bateman. At the level of quantum mechanics, we are able to show how the relevant Schrödinger equation emerges naturally using the techniques of quantum field theory in curved spacetimes, since a covariantly constant null Killing vector field gives rise to well defined one particle Hilbert space.  相似文献   

8.
Many invariants of knots and links have their counterparts in braid theory. Often, these invariants are most easily calculated using braids. A braid is a set of n strings stretching between two parallel planes. This review demonstrates how integrals over the braid path can yield topological invariants. The simplest such invariant is the winding number – the net number of times two strings in a braid wrap about each other. But other, higher-order invariants exist. The mathematical literature on these invariants usually employs techniques from algebraic topology that may be unfamiliar to physicists and mathematicians in other disciplines. The primary goal of this paper is to introduce higher-order invariants using only elementary differential geometry.Some of the higher-order quantities can be found directly by searching for closed one-forms. However, the Kontsevich integral provides a more general route. This integral gives a formal sum of all finite order topological invariants. We describe the Kontsevich integral, and prove that it is invariant to deformations of the braid.Some of the higher-order invariants can be used to generate Hamiltonian dynamics of n particles in the plane. The invariants are expressed as complex numbers; but only the real part gives interesting topological information. Rather than ignoring the imaginary part, we can use it as a Hamiltonian. For n = 2, this will be the Hamiltonian for point vortex motion in the plane. The Hamiltonian for n = 3 generates more complicated motions.  相似文献   

9.
We study the dynamics of the multipartite systems nonresonantly interacting with electromagnetic fields, focusing on the large detuning limit for the effective Hamiltonian. Due to the many-particle interference effects, the more rigorous large detuning condition for neglecting the rapidly oscillating terms for the effective Hamiltonian should be N 1/2 g, instead of g usually used in the literature even in the case of multipartite systems, with N the number of microparticles involved, g the coupling strength, the detuning. This result is significant since merely the satisfaction of the original condition will result in the invalidity of the effective Hamiltonian and the errors of the parameters associated with the detuning in the multipartite case.  相似文献   

10.
We use a Hamiltonian approach to derive a general expression for 5D Kaluza—Klein metrics which depend on the extra coordinate but whose 4D embedded spacetimes are asymptotically de Sitter. This enables us to better understand the nature of the cosmological constant and the role played by the dimension in inducing 4D matter from 5D geometry.  相似文献   

11.
Vector fields whose flow preserves a symplectic form up to a constant, such as simple mechanical systems with friction, are called “conformal”. We develop a reduction theory for symmetric conformal Hamiltonian systems, analogous to symplectic reduction theory. This entire theory extends naturally to Poisson systems: given a symmetric conformal Poisson vector field, we show that it induces two reduced conformal Poisson vector fields, again analogous to the dual pair construction for symplectic manifolds. Conformal Poisson systems form an interesting infinite-dimensional Lie algebra of foliate vector fields. Manifolds supporting such conformal vector fields include cotangent bundles, Lie–Poisson manifolds, and their natural quotients.  相似文献   

12.
A new noncommutative differential calculus on function space of discrete Abelian groups is proposed. The derivatives are introduced with respect to the generators of the groups only. It is applied to discrete symplectic geometry and Hamiltonian systems with H(p, q) = T(p) + V(q) as well as the lattice gauge theory on regular lattice.  相似文献   

13.
14.
We derive expressions for the conjugate momenta and the Hamiltonian for classical dynamical systems subject to holonomic constraints. We give an algorithm for correcting deviations of the constraints arising in numerical solution of the equations of motion. We obtain an explicit expression for the momentum integral for constrained systems.  相似文献   

15.
In this work, we build exact dynamical invariants for time-dependent, linear, nonholonomic Hamiltonian systems in two dimensions. Our aim is to obtain an additional insight into the theoretical understanding of generalized Hamilton canonical equations. In particular, we investigate systems represented by a quadratic Hamiltonian subject to linear nonholonomic constraints. We use a Lie algebraic method on the systems to build the invariants. The role and scope of these invariants is pointed out.  相似文献   

16.
A four-dimensional Walker geometry is a four-dimensional manifold M with a neutral metric g and a parallel distribution of totally null two-planes. This distribution has a natural characterization as a projective spinor field subject to a certain constraint. Spinors therefore provide a natural tool for studying Walker geometry, which we exploit to draw together several themes in recent explicit studies of Walker geometry and in other work of Dunajski [11] and Pleba?ski [30] in which Walker geometry is implicit. In addition to studying local Walker geometry, we address a global question raised by the use of spinors.  相似文献   

17.
For constrained Hamiltonian systems, the motion equations are deduced from total Hamiltonian and extended Hamiltonian with Lagrangian multipliers depending on time t and canonical variables q i and p i . When the multipliers reduced to only depend on time t, the motion equations exactly agree with the old results. Under the same conditions (Lagrangian multipliers depend on time t and canonical variables q i and p i ), the relation equations of coefficients in the generator of gauge transformation are deduced, but the equations have an additive term besides the well-known results. This additive term is from Lagrangian multipliers depending on canonical variables, and it might perform the gauge symmetries that needs to be discussed further. This project is supported by the fund of National Natural Science (10671086) and by National Laboratory for Superlattices and Microstructures (CHJG200605).  相似文献   

18.
A method, called beatification, is presented for rapidly extracting weakly nonlinear Hamiltonian systems that describe the dynamics near equilibria of systems possessing Hamiltonian form in terms of noncanonical Poisson brackets. The procedure applies to systems like fluids and plasmas in terms of Eulerian variables that have such noncanonical Poisson brackets, i.e., brackets with nonstandard and possibly degenerate form. A collection of examples of both finite and infinite dimensions is presented.  相似文献   

19.
We provide a new insight into the relationship between the geometric property of the potential energy surface and chaotic behavior of 2D Hamiltonian dynamical systems, and give an indicator of chaos based on the geometric property of the potential energy surface by defining Mean Convex Index (MCI). We also discuss a model of unstable Hamiltonian in detail, and show our results in good agreement with HBLSL's (Horwitz, Ben Zion, Lewkowicz, Schiffer and Levitan) new Riemannian geometric criterion.  相似文献   

20.
First-class constraints constitute a potential obstacle to the computation of a Poisson bracket in Dirac’s theory of constrained Hamiltonian systems. Using the pseudoinverse instead of the inverse of the matrix defined by the Poisson brackets between the constraints, we show that a Dirac–Poisson bracket can be constructed, even if it corresponds to an incomplete reduction of the original Hamiltonian system. The uniqueness of Dirac brackets is discussed. The relevance of this procedure for infinite dimensional Hamiltonian systems is exemplified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号