首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The synthesis of MoVNbTe(Sb)O(x)() composite oxide catalysts based on the self-organization of polyoxometalates (POMs) was investigated. The catalysts which were synthesized via reduction of POMs by using reducing agents under mild conditions and/followed by calcination in an O(2)-excluded atmosphere which superior performance for propane (amm)oxidation. It was suggested that the metastable phase formed at an elevated temperature with a specific oxidation state corresponds to the catalytic activity.  相似文献   

2.
The nitrate-intercalated layered double hydroxide of Co with Fe decomposes on hydrothermal treatment to yield an oxide residue at a temperature as low as 180 degrees C. The oxide product is phase segregated into a Co(3)O(4)-type normal spinel and a CoFe(2)O(4)-type inverse spinel. Phase segregation is facilitated as decomposition in a solution medium takes place by dissolution of the precursor hydroxide followed by reprecipitation of the oxide phases. In contrast, thermal decomposition takes place at 400 degrees C. This temperature is inadequate to induce diffusion in the solid state whereby phase segregation into the thermodynamically stable individual spinels is suppressed. The result is a single-phase metastable mixed spinel oxide. This is rather uncommon in that a hydrothermal treatment yields thermodynamically stable products where as thermal decomposition yields a metastable product.  相似文献   

3.
A simple method was adopted in which ultrathin cerium oxide nanoplates (<1.4 nm) were synthesized to increase the surface atomic content, allowing transformation from a face‐centered cubic (fcc) phase to a body‐centered tetragonal (bct) phase. Three types of cerium oxide nanoparticles of different thicknesses (1.2 nm ultrathin nanoplates, 2.2 nm nanoplates, and 5.4 nm nanocubes) were examined using transmission electron microscopy and X‐ray diffraction. The metastable bct phase was observed only in ultrathin nanoplates. Thermodynamic energy analysis confirmed that the surface energy of the ultrathin nanoplates is the cause of the remarkable stabilization of the metastable bct phase. The mechanism of surface energy regulation can be expanded to other metallic oxides, thus providing a new means for manipulating and stabilizing novel materials under ambient conditions that otherwise would not be recovered.  相似文献   

4.
By using in situ aberration-corrected environmental transmission electron microscopy, for the first time at atomic level, the dynamic evolution of the Cu surface is captured during CO oxidation. Under reaction conditions, the Cu surface is activated, typically involving 2–3 atomic layers with the formation of a reversible metastable phase that only exists during catalytic reactions. The distinctive role of CO and O2 in the surface activation is revealed, which features CO exposure to lead to surface roughening and consequently formation of low-coordinated Cu atoms, while O2 exposure induces a quasi-crystalline CuOx phase. Supported by DFT calculations, it is shown that crystalline CuOx reversibly transforms into the amorphous phase, acting as an active species to facilitate the interaction of gas reactants and catalyzing CO oxidation.  相似文献   

5.
By using in situ aberration‐corrected environmental transmission electron microscopy, for the first time at atomic level, the dynamic evolution of the Cu surface is captured during CO oxidation. Under reaction conditions, the Cu surface is activated, typically involving 2–3 atomic layers with the formation of a reversible metastable phase that only exists during catalytic reactions. The distinctive role of CO and O2 in the surface activation is revealed, which features CO exposure to lead to surface roughening and consequently formation of low‐coordinated Cu atoms, while O2 exposure induces a quasi‐crystalline CuOx phase. Supported by DFT calculations, it is shown that crystalline CuOx reversibly transforms into the amorphous phase, acting as an active species to facilitate the interaction of gas reactants and catalyzing CO oxidation.  相似文献   

6.
采用X射线光电子能谱(XPS)原位分析研究了298 K时烧结UC的清洁表面在O2气氛中的初始氧化过程. UC试样清洁表面通过氩离子束长时间溅射获取. 初始反应各阶段U4f, O1s和C1s芯能级谱的变化显示样品表面的氧化产物为UO2和自由碳. 当O2饱和吸附后, UC表面氧化膜的增长呈抛物线型, 氧透过氧化膜的扩散为UC进一步氧化的速率控制步骤. 定量分析表明, 反应过程中U, C原子均未出现明显的表面偏析.  相似文献   

7.
The effects of iron oxide (10%), bismuth oxide (2.2%), and vanadium oxide (1.6%) admixtures on the physicochemical properties of cordierite ceramics are reported, including the phase composition, surface features, porous structure, and activity in ammonia oxidation. The formation of the cordierite phase is favored by introducing the oxide modifiers, by raising the heat treatment temperature, and by extending the heating time. The introduction of V2O5 affords well-crystallized cordierite with a small specific surface area and a large proportion of macropores. The oxide modifiers markedly enhance the ammonia oxidation activity and nitrogen oxide selectivity of the cordierite ceramics.  相似文献   

8.
The transfer of atomic oxygen from the surface of bismuth oxide onto molybdenum oxide through the gas phase, including the case when ozone was fed to the catalyst bed, is experimentally studied. It is found that the transfer of atomic oxygen through the gas phase only leads to the formation of the products of complete oxidation of propylene under conditions of heterogeneous propylene oxidation on the mixture of molybdenum and bismuth oxides. No new sites are formed on the surface of molybdenum oxide.  相似文献   

9.
The oxidation states formed during low-temperature oxidation (T < 500 K) of a Ru(0001) surface are identified with photoelectron spectromicroscopy and thermal desorption (TD) spectroscopy. Adsorption and consecutive incorporation of oxygen are studied following the distinct chemical shifts of the Ru 3d(5/2) core levels of the two topmost Ru layers. The evolution of the Ru 3d(5/2) spectra with oxygen exposure at 475 K and the corresponding O2 desorption spectra reveal that about 2 ML of oxygen incorporate into the subsurface region, residing between the first and second Ru layer. Our results suggest that the subsurface oxygen binds to the first and second layer Ru atoms, yielding a metastable surface "oxide", which represents the oxidation state of an atomically well ordered Ru(0001) surface under low-temperature oxidation conditions. Accumulation of more than 3 ML of oxygen is possible via defect-promoted penetration below the second layer when the initial Ru(0001) surface is disordered. Despite its higher capacity for oxygen accumulation, also the disordered Ru surface does not show features characteristic for the crystalline RuO2 islands. Development of lateral heterogeneity in the oxygen concentration is evidenced by the Ru 3d(5/2) images and microspot spectra after the onset of oxygen incorporation, which becomes very pronounced when the oxidation is carried out at T > 550 K. This is attributed to facilitated O incorporation and oxide nucleation in microregions with a high density of defects.  相似文献   

10.
A noble metal (NM) can stabilize monolayer-dispersed surface oxide phases with metastable nature. The formed "oxide-on-metal" inverse catalyst presents better catalytic performance than the NM because of the introduction of coordinatively unsaturated cations at the oxide-metal boundaries. Here we demonstrate that an ultrathin NM layer grown on a non-NM core can impose the same constraint on the supported oxide as the bulk NM. Cu@Pt core-shell nanoparticles (NPs) decorated with FeO patches use much less Pt but exhibit performance similar to that of Pt NPs covered with surface FeO patches in the catalytic oxidation of CO. The "oxide-on-core@shell" inverse catalyst system may open a new avenue for the design of advanced nanocatalysts with decreased usage of noble metals.  相似文献   

11.
The degradation of Pt-containing oxygen reduction catalysts for fuel cell applications is strongly linked to the electrochemical surface oxidation and reduction of Pt. Here, we study the surface restructuring and Pt dissolution mechanisms during oxidation/reduction for the case of Pt(100) in 0.1 M HClO4 by combining operando high-energy surface X-ray diffraction, online mass spectrometry, and density functional theory. Our atomic-scale structural studies reveal that anodic dissolution, detected during oxidation, and cathodic dissolution, observed during the subsequent reduction, are linked to two different oxide phases. Anodic dissolution occurs predominantly during nucleation and growth of the first, stripe-like oxide. Cathodic dissolution is linked to a second, amorphous Pt oxide phase that resembles bulk PtO2 and starts to grow when the coverage of the stripe-like oxide saturates. In addition, we find the amount of surface restructuring after an oxidation/reduction cycle to be potential-independent after the stripe-like oxide has reached its saturation coverage.  相似文献   

12.
We report experimental results on the low-temperature uptake of HCl on H(2)O ice (ice). HCl was deposited on the surface at greater than monolayer amounts at 85 K, and the ice substrate was heated. The temperature dependence of the HCl vapor pressure from this phase was measured from 110 to 150 K, with the nucleation of a bulk hydrate phase observed at 150 K. Measurements were conducted in a closed system by simultaneous application of gas phase mass spectrometry and surface spectroscopy to characterize vapor/solid equilibrium and the nucleation of bulk hydrate phases. Combining the nucleation data reported here with data we reported previously (180 to 200 K) and data from two other laboratories (165 and 170 K), the thermodynamic boundaries for the nucleation of both the metastable bulk solution and bulk hydrate phases subsequent to monolayer adsorption of HCl have been determined. The nucleation of the metastable bulk solution phase occurs promptly at monolayer coverage at the ice/liquid coexistence boundary on the binary bulk phase diagram. The nucleation of the bulk hexahydrate occurs from this metastable solution along a locus of points defining a state of constant solution free energy. This measured free energy is -51.2 +/- 0.9 kJ/mol. Finally, the temperature dependence of the HCl vapor pressure from the low-temperature phase is reported here for the first time and is consistent with that of the metastable solution predicted by this thermodynamic model of uptake, extending the range of validity of this model of adsorption followed by bulk solution and hydrate nucleation to a lower bound in temperature of 110 K.  相似文献   

13.
The characteristics of the oxide layer of titanium generated by anodic spark oxidation are affected significantly by the process variables. In this study, electrochemical treatments were performed while applying a direct current, a pulse current, and a reverse pulse current during anodic spark oxidation. A mixed solution of 0.015 M DL‐α‐GP (DL‐α‐glycerophosphate disodium salt) and 0.2 M CA (calcium acetate) was used as the electrolyte. The pore size generated after anodic spark oxidation was smallest in the group exposed to the reverse pulse current followed in order by the pulse current and direct current. Anatase was the major crystal phase of the TiO2 produced on the surfaces subjected to 280 V, and the rutile phase was additionally detected in the group subjected to 320 V. The crystals precipitated on the surface after the hydrothermal treatment were hydroxyapatite (HA) crystals that had a polygonal bar‐shaped needle structure. Good activity was observed in the 320‐V pulse treated group, in which very thin needle‐shaped crystals were observed after immersing the samples in Hanks' solution for 4 weeks. The cell viability was increased greatly by anodic spark oxidation, and the surface roughness was also increased. It is believed that the surface treated using a pulse current has excellent characteristics, making it suitable for applications in biomaterials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Nickel-copper compositions for catalytic oxidation of carbon(II) oxide to carbon(IV) oxide were prepared by impregnation of oxide films on titanium surface, obtained by plasma electrolytic oxidation followed by annealing. Plasma electrolysis oxide coatings with a layer thickness of 5 to 50 μm were generated using different electrolytes. The compositions were studied by X-ray powder diffraction, X-ray spectral analysis, and electron microscopy, and moisture absorption of the initial plasma electrolytic structures was estimated. A linear correlation was found between the overall concentration of nickel and copper (4 to 25 mol %) in the surface layer of ∼2–5-μm compositions and their catalytic activity. The overall concentration of nickel and copper was found to increase in parallel with the moisture absorption of plasma electrolytic oxidation coatings. Nickel-copper compositions based on plasma electrolytic oxidation coatings generated in a silicate electrolyte displayed the best catalytic, mechanical, and adhesion properties.  相似文献   

15.
Temperature-programmed reaction spectroscopy (TPRS) and direct, isothermal reaction-rate measurements were employed to investigate the oxidation of CO on Pt(111) covered with high concentrations of atomic oxygen. The TPRS results show that oxygen atoms chemisorbed on Pt(111) at coverages just above 0.25 ML (monolayers) are reactive toward coadsorbed CO, producing CO(2) at about 295 K. The uptake of CO on Pt(111) is found to decrease with increasing oxygen coverage beyond 0.25 ML and becomes immeasurable at a surface temperature of 100 K when Pt(111) is partially covered with Pt oxide domains at oxygen coverages above 1.5 ML. The rate of CO oxidation measured as a function of CO beam exposure to the surface exhibits a nearly linear increase toward a maximum for initial oxygen coverages between 0.25 and 0.50 ML and constant surface temperatures between 300 and 500 K. At a fixed CO incident flux, the time required to reach the maximum reaction rate increases as the initial oxygen coverage is increased to 0.50 ML. A time lag prior to the reaction-rate maximum is also observed when Pt oxide domains are present on the surface, but the reaction rate increases more slowly with CO exposure and much longer time lags are observed, indicating that the oxide phase is less reactive toward CO than are chemisorbed oxygen atoms on Pt(111). On the partially oxidized surface, the CO exposure needed to reach the rate maximum increases significantly with increases in both the initial oxygen coverage and the surface temperature. A kinetic model is developed that reproduces the qualitative dependence of the CO oxidation rate on the atomic oxygen coverage and the surface temperature. The model assumes that CO chemisorption and reaction occur only on regions of the surface covered by chemisorbed oxygen atoms and describes the CO chemisorption probability as a decreasing function of the atomic oxygen coverage in the chemisorbed phase. The model also takes into account the migration of oxygen atoms from oxide domains to domains with chemisorbed oxygen atoms. According to the model, the reaction rate initially increases with the CO exposure because the rate of CO chemisorption is enhanced as the coverage of chemisorbed oxygen atoms decreases during reaction. Longer rate delays are predicted for the partially oxidized surface because oxygen migration from the oxide phase maintains high oxygen coverages in the coexisting chemisorbed oxygen phase that hinder CO chemisorption. It is shown that the time evolution of the CO oxidation rate is determined by the relative rates of CO chemisorption and oxygen migration, R(ad) and R(m), respectively, with an increase in the relative rate of oxygen migration acting to inhibit the reaction. We find that the time lag in the reaction rate increases nearly exponentially with the initial oxygen coverage [O](i) (tot) when [O](i) (tot) exceeds a critical value, which is defined as the coverage above which R(ad)R(m) is less than unity at fixed CO incident flux and surface temperature. These results demonstrate that the kinetics for CO oxidation on oxidized Pt(111) is governed by the sensitivity of CO binding and chemisorption on the atomic oxygen coverage and the distribution of surface oxygen phases.  相似文献   

16.
As part of an ongoing program to model hydrocarbon assisted boron combustion, a kinetic model has been developed to describe gasification of the ubiquitous boron oxide coating that inhibits particulate boron ignition. This model includes homogeneous gas phase oxidation reactions, multi-component gas phase diffusion, heterogeneous surface reactions, and oxide vaporization. The kinetic processes are treated using a generalized kinetics code, with embeded sensitivity analysis, for the combustion of a one-dimensional (particle radius), spherical particle. This article presents the heterogeneous surface reactions used to describe oxide gasification and presents selected model results for a spherical boron oxide droplet which illustrate the dependence of the oxide gasification rates on the ambient temperature and particle diameter.  相似文献   

17.
The oxidation of benzyl alcohol in the liquid phase was studied over manganese oxide catalyst using molecular oxygen as an oxidant. Manganese oxide was prepared by a mechanochemical process in solid state and was characterized by chemical and physical techniques. The catalytic performance of manganese oxide was explored by carrying out the oxidation of benzyl alcohol at 323–373 K temperature and 34–101 kPa partial pressure of oxygen. Benzaldehyde and benzoic acid were identified as the reaction products. Typical batch reactor kinetic data were obtained and fitted to the Langmuir–Hinshelwood, Eley–Rideal, and Mars–van Krevelene models of heterogeneously catalyzed reactions. The Langmuir–Hinshelwood model was found to give a better fit. Adsorption of benzyl alcohol at the surface of the catalyst followed the Langmuir adsorption isotherm. The heat of adsorption for benzyl alcohol was determined as –18.14 kJ mol?1. The adsorption of oxygen followed the Temkin adsorption isotherm. The maximum heat of adsorption for oxygen was –31.12 kJ mol?1. The value of activation energy was 71.18 kJ mol?1, which was apparently free from the influence of the heat of adsorption of both benzyl alcohol and oxygen.  相似文献   

18.
CuO在ZrO2上的分散状态及其对催化性能的影响   总被引:7,自引:3,他引:7  
用XRD、TPR和TPD-MS等手段表征了浸渍法制备的CuO/ZrO2催化剂,发现ZrO2上高度分散的氧化铜具有显著的易被还原和再氧化的特性,从而催化剂具有高的CO氧化活性。  相似文献   

19.
The steady-state nucleation rate and flux of composite nucleus at the saddle point is studied by extending the theory of binary nucleation. The Fokker-Planck equation that describes the nucleation flux is derived using the Master equation for the growth of the composite nucleus, which consists of the core of the final stable phase surrounded by a wetting layer of the intermediate metastable phase nucleated from a metastable parent phase recently evaluated by Iwamatsu [J. Chem. Phys. 134, 164508 (2011)]. The Fokker-Planck equation is similar to that used in the theory of binary nucleation, but the non-diagonal elements exist in the reaction rate matrix. First, the general solution for the steady-state nucleation rate and the direction of nucleation flux is derived. Next, this information is then used to study the nucleation of composite nucleus at the saddle point. The dependence of steady-state nucleation rate as well as the direction of nucleation flux on the reaction rate in addition to the free-energy surface is studied using a model free-energy surface. The direction of nucleation current deviates from the steepest-descent direction of the free-energy surface. The results show the importance of two reaction rate constants: one from the metastable environment to the intermediate metastable phase and the other from the metastable intermediate phase to the stable new phase. On the other hand, the gradient of the potential Φ or the Kramers crossover function (the commitment or splitting probability) is relatively insensitive to reaction rates or free-energy surface.  相似文献   

20.
The oxidation of titanium hydride powder by air oxygen and the influence of oxidation conditions on the degree of oxidation of hydride particles, specific gas content in the powder, and kinetics of its thermal decomposition were studied. The resistometry method was used to determine the effective activation energy of oxidation of titanium hydride by air oxygen. The content of the surface nonconducting phase formed by titanium oxide and oxohydride films under various oxidation conditions was estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号