首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
新型PLA-PVP两亲性共聚物的生物相容性   总被引:1,自引:0,他引:1  
通过溶血试验、动态凝血试验、血小板吸附试验、细胞毒性试验,对新型PLA—PVP两亲性共聚物的生物相容性进行了研究,并考察了共聚物的组成对其生物相容性的影响。结果表明,共聚物的溶血率、凝血程度、血小板吸附和变形情况均符合生物材料生物学评价标准,并且,随单体投料比中亲水性单体NVP舍量增大,共聚物的血液相容性有所提高;细胞毒性试验结果显示共聚物对细胞无毒性,对其生长无明显抑制作用。共聚物中引入亲水性PVP链段后,与单一的PLA材料相比较,生物相容性得到改善。  相似文献   

2.
从聚酯合成聚酯-聚醚多嵌段共聚物   总被引:3,自引:1,他引:3  
研究直接以聚酯为原料,合成聚酯-聚醚多嵌段共聚物。研究了反应机理、链段结构对反应的影响以及由此法制备的多嵌段共聚物的链段序列结构。实验结果表明,链段相容性对聚合物法的影响至为重要,链段相容性不仅决定了所得嵌段共聚物的组成均一性,而且还决定了某一链段结构的多嵌段共聚物能否用聚合物法制备。  相似文献   

3.
本工作对聚氧化乙烯-聚苯乙烯-聚氧化乙烯(PEO-PS-PEO)三嵌段共聚物与聚苯醚(PPO)均聚物共混物的相容性及结晶行为进行了研究。结果表明,共混体系的相容性与嵌段共聚物中苯乙烯段的含量有关,PS含量越高,PPO与共聚物PS段的相容性越好。共混体系的结晶行为也明显不同于一般均聚物共混体系。在DSC降温结晶过程中最多可出现三个结晶峰。  相似文献   

4.
 本工作对聚氧化乙烯-聚苯乙烯-聚氧化乙烯(PEO-PS-PEO)三嵌段共聚物与聚苯醚(PPO)均聚物共混物的相容性及结晶行为进行了研究。结果表明,共混体系的相容性与嵌段共聚物中苯乙烯段的含量有关,PS含量越高,PPO与共聚物PS段的相容性越好。共混体系的结晶行为也明显不同于一般均聚物共混体系。在DSC降温结晶过程中最多可出现三个结晶峰。  相似文献   

5.
本文通过X-射线光电子能谱(XPS)、表面接触角、表面ξ电位和血液相容性实验,研究了聚(醚-酯)多嵌段共聚物及其共混物的表面组成和性质与血液相容性的关系。实验结果表明,疏水性的PET-PTMO多嵌段共聚物的血液相容性很差,并且与表相中软段的富集量无关;当亲水性的PET-PEO多嵌段共聚物与疏水性的PET-PTMO多嵌段共聚物共混后,发现存在着一个最佳的共混比例,此时材料表面的血小板粘附量大大降低。对于共混物,表相△[C—O)/[C—O]和表面ξ电位可以较好地与血小板粘附量相关联。以上结果清楚地表明,材料表面的亲-疏水性平衡、软段深度层次分布及表面电位是影响血液相容性的重要因素。  相似文献   

6.
聚氨酯弹性体的相区相容性和阻尼性能研究   总被引:14,自引:0,他引:14  
合成了一系列含有不同软段的聚氨酯嵌段共聚物及接枝共聚物,并测试了其动态力学性能,结果表明,聚氨酯共聚物的相容性与大分子的链结构有关,接枝链的存在对聚氨酯嵌优共聚物相空性和阻尼性能有很大影响。  相似文献   

7.
PTHF-b-PMMA/PVC共混体系的相容性和结晶行为   总被引:1,自引:0,他引:1  
研究了具有焓效应的聚四氢呋喃-聚甲基丙烯酸甲酯两嵌段共聚物与聚氯乙烯PTHF-b-PMMA/PVC)共混体系的相容性和结晶行为. 结果表明, 其相容性比AB/A型嵌段共聚物共混体系的相容性要好得多; 与PTHF部分相容的PVC对PTHF微区的结晶行为可产生很大的影响. 应用有关理论和模型很好地解释了结晶行为的这种变化.  相似文献   

8.
通过控制均聚物与共聚物共混过程中的相行为,能够得到许多性能优异的材料。本文从理论和实验两方面总结了影响均聚物/共聚物共混体系相容性和形态结构的因素,主要包括均聚物的分子量、浓度,共聚物的组成、结构、浓度,与均聚物相应的共聚物组分的分子量,共聚物分子内的相互作用,均聚物与共聚物分子间的相互作用等。  相似文献   

9.
以双酚A聚砜或酚酞作为硬段,聚对羟基苯乙烯、酚醛、聚羟基醚或聚羟基醚砜作为半硬段,聚二甲基硅氧烷作为软段合成了七种三元多嵌段共聚物,并对其稳定性、动态力学性能进行了比较详细的研究。结果表明这类共聚物在溶液中的稳定性及热稳定性主要与半硬段有关;它们的形态结构同属于微相分离,并在很宽的温度范围内表现出优良的弹性体性质。三元多嵌段共聚物中硬段与半硬段的相容性直接影响其力学性能,当两者的相容性好时,其强度高于对应的二元多嵌段共聚物。  相似文献   

10.
张涵  孙志强  庞烜  李帅  孙敬茹  陈文啟  陈学思 《应用化学》2015,32(11):1268-1274
通过开环聚合,合成不同比例的ε-己内酯(ε-CL)与L-丙交酯(L-LA)的无规共聚物P(CL/LLA)。 将上述共聚物P(CL/LLA)与聚乳酸(PLLA)共混,制备了PLA/P(CL/LLA)共混材料。 并对其相容性、热性能、力学性能进行了研究。 结果表明,共聚物P(CL/LLA)与PLA相容性与共聚物中LA单元含量和链段的平均长度有密切关系,P(CL/LLA)中LA链段平均长度达到3.4以上时,可以与PLA很好的相互作用。 同时共聚物P(CL/LLA)中-CL-链段有很好的柔性,可以很好的改善PLLA的韧性,使PLLA材料的断裂伸长率达到500%以上。  相似文献   

11.
A series of poly(2-acetoxyethyl methacrylate)/polystyrene(PAEMA/PS) latex interpenetrating polymer networks(LIPNs) were prepared by seeded soap-free emulsion polymerization of styrene on the crosslinked PAEMA seed particles using an oil-soluble initiator.These PAEMA/PS LIPNs showed a well-defined phase-separated structure with PS phase dispersing in continuous PAEMA phase.The domain size of PS phase was found to depend on the crosslinking degree of PAEMA seed particles and the amount of second-stage styrene monomer.  相似文献   

12.
The effect of the triblock copolymer poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) on the formation of the space charge of immiscible low‐density polyethylene (LDPE)/polystyrene (PS) blends was investigated. Blends of 70/30 (wt %) LDPE/PS were prepared through melt blending in an internal mixer at a blend temperature of 220 °C. The amount of charge that accumulated in the 70% LDPE/30% PS blends decreased when the SEBS content increased up to 10 wt %. For compatibilized and uncompatibilized blends, no significant change in the degree of crystallinity of LDPE in the blends was observed, and so the effect of crystallization on the space charge distribution could be excluded. Morphological observations showed that the addition of SEBS resulted in a domain size reduction of the dispersed PS phase and better interfacial adhesion between the LDPE and PS phases. The location of SEBS at a domain interface enabled charges to migrate from one phase to the other via the domain interface and, therefore, resulted in a significant decrease in the amount of space charge for the LDPE/PS blends with SEBS. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2813–2820, 2004  相似文献   

13.
Polyethylene‐g‐polystyrene (PE‐g‐PS) was synthesized as a compatibilizer for polypropylene/polystyrene­(PP/PS) blends by the living radical polymerization of styrene with polyethylene‐co‐glycidylmethacrylate (PE‐co‐GMA). The compatibilizer effect of PE‐g‐PS on the morphology and thermal properties of PP/PS blends was investigated. The crystalline temperature of PP in PP/PS blends decreased with increasing PE‐g‐PS contents. Morphologies of PP/PE‐g‐PS/PS blends showed much better dispersion of each domain for higher PE‐g‐PS contents. The molecular weight of PS segment in PP/PE‐g‐PS/PS blend was increased by addition of styrene monomer during the post melt blending process where post living radical polymerization reaction proceeded. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
A series of latex particles with interpenetrating polymer network structure have been synthesized from waterborne polyurethane (PU) and polystyrene (PS). The effect of PU/PS composition, cross-linking density in the PS domain as well as in PU have been studied in terms of dispersion size, transmission electron microscopy morphology, mechanical and dynamic mechanical properties in addition to swellability in water and toluene of the dispersion cast film. It was found that inverted core (PS)–shell (PU) morphology was well defined and that the domain size as well as the film properties were well controlled by the latex composition and cross-linking density of both phases. Received: 15 March 2000 Accepted: 21 February 2001  相似文献   

15.
 Monodispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles having 9.4 μm in diameter were produced by seeded polymerization for the dispersion of highly n-butyl methacrylate (BMA)-swollen PS particles, and their morphologies were examined. The highly BMA-swollen PS particles (about 150 times the weight of the PS seed particles) were prepared by mixing monodispersed 1.8 μm-sized PS seed particles and 0.7 μm sized BMA droplets prepared with an ultrasonic homogenizer in ethanol/water (1/2, w/w) medium at room temperature. After NaNO2 aqueous solution as inhibitor was added in the dispersion, the seeded polymerization was carried out at 70 °C. In an optical microscopic observation, one or two spherical high contrast regions which consisted mainly of PS were observed inside PS/PBMA composite particles. In the PS domain, there were many fine spherical PBMA domains. Such morphologies were based on the phase separation of PS and PBMA within the homogeneous swollen particles during the seeded polymerization. Received: 04 June 1997 Accepted: 27 August 1997  相似文献   

16.
 The effect of the weight ratio of seed polymer/monomer on the morphology of the poly(methyl methacrylate) (PMMA)/polystyrene (PS) monodispersed composite particles produced by batch seeded dispersion polymerization of styrene with 1.64-μm-sized monodispersed PMMA seed particles in a methanol/water medium (4/1 w/w) was examined. In the PMMA/PS weight ratios of 3/1 and 2/1, the composite particles had a clear morphology consisting of a PMMA core and a PS shell. In the ratio of 1/1, a lot of small PS domains were observed in the PMMA core though the PS shell was still formed. By stepwise addition of styrene monomer, the formation of the small PS domain was depressed and complete core/shell morphology was formed. Absorption/release treatments of toluene into/from the PMMA/PS (1/1 w/w) composite particles resulted in a drastic morphological change from the core/shell structure to a multi- layered one. Received: 2 February 1999 Accepted in revised form: 7 April  相似文献   

17.
Submicron-sized peanut-shaped poly(methyl methacrylate)/polystyrene(PMMA/PS) particles were successfully synthesized by seeded soap-free emulsion polymerization of styrene on the spherical crosslinked PMMA seed particles.The obtained peanut-shaped particles showed a novel internal morphology:PS phase formed one domain which linked to the other domain having PMMA core encased by PS shell.  相似文献   

18.
Polystyrene (PS) and poly(ethylene terephthalate) (PET) were blended together in the solid state via cryogenic mechanical attrition (CMA) and in the melt through conventional twin‐screw extrusion. CMA PS/PET blend morphologies were characterized both qualitatively and quantitatively through microscopy and thermal analysis. Specifically, CMA reduced the dispersed‐phase domain size and its distribution relative to simple melt extrusion, although not to the extent attained with added chemical compatibilizers. CMA also amorphized the PET phase and depressed the PET cold crystallization rate, which was measured by post‐CMA nonisothermal MDSC analysis. The PET amorphization efficiency and crystallizability for CMA PS/PET blends were the highest and lowest, respectively, at the PS/PET phase inversion. These concomitant phenomena are known to be caused by CMA‐induced PET crystal defect formation and subsequent entropic stabilization. Such behaviors are linked to the enhanced presence of an uncrystallizable rigid amorphous PET phase, and the weight fraction of this rigid amorphous fraction (RAF PET) was quantified and also maximized near the PS/PET phase inversion. Moreover, the increased compatibilization and amorphization efficiencies and reduced PET crystallizability were determined to be interdependent. These studies have verified that CMA of PET with PS is more efficient than extrusion due to the formation of nonequilibrium, metastable morphologies that can be more precisely controlled and better stabilized with an interesting, composition‐dependent interplay between PET crystallizability and the extent of PS/PET compatibilization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1348–1359, 2008  相似文献   

19.
采用化学共沉淀方法合成了Fe3O4纳米粒子, 用3-甲基丙烯酰氧基丙基三甲氧基硅烷(3-MPS)对其进行表面接枝修饰, 然后以苯乙烯(St)为单体, 过氧化苯甲酰(BPO)为引发剂, 4-羟基-2,2,6,6-四甲基哌啶-1-氧化物自由基(HTEMPO·)为稳定自由基介质, 采用可控/“活性”自由基聚合技术在修饰后的Fe3O4纳米粒子表面原位引发聚合, 制备了粒径小、分布窄、磁含量高的磁性聚苯乙烯(PS)纳米粒子. X射线衍射(XRD)研究表明, 所合成的Fe3O4粒子为尖晶石结构. 凝胶渗透色谱(GPC)分析表明, 聚苯乙烯的分子量与反应时间呈较好的线性关系. 透射电镜(TEM)观察表明, 所制备的磁性聚苯乙烯纳米粒子的粒径在20-30 nm之间. 热重(TG)分析得到磁性聚苯乙烯纳米粒子的磁含量为62.6%. 振动样品磁强计(VSM)测试结果表明, 磁性聚苯乙烯纳米粒子的比饱和磁化强度为31.7 emu·g-1, 呈现单磁畴结构.  相似文献   

20.
 Micron-sized, monodispersed polystyrene (PS)/poly (n-butyl methacrylate) (PBMA) composite particles, in which the PS domain(s) were dispersed in a PBMA continuous phase, were produced by seeded polymerization for dispersions of n-butyl methacrylate (BMA) swollen PS particles in a wide range of PS/BMA ratios in the presence of NaNO2 as a water-soluble inhibitor. Moreover, in order to change the diameter of the composite particles at same PS/BMA ratio, PS/PBMA (1/150 w/w) composite particles were produced using five kinds of PS particles in a range of diameters from 0.64 to 3.27 μm as seeds. The percentages of the PS/PBMA composite particles having double and triple and over PS domains, which were thermodynamically unstable morphologies, increased with the increase in the diameter of BMA swollen PS particles. There was a clear influence of the size of the swollen particles on the morphology of the PS/PBMA composite particles produced. Received: 30 September 1999/Accepted: 18 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号