首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 986 毫秒
1.
Two classes of edge domination in graphs   总被引:2,自引:0,他引:2  
Let (, resp.) be the number of (local) signed edge domination of a graph G [B. Xu, On signed edge domination numbers of graphs, Discrete Math. 239 (2001) 179-189]. In this paper, we prove mainly that and hold for any graph G of order n(n?4), and pose several open problems and conjectures.  相似文献   

2.
3.
4.
5.
6.
A discrete function f defined on Zn is said to be logconcave if for , , . A more restrictive notion is strong unimodality. Following Barndorff-Nielsen [O. Barndorff-Nielsen, Unimodality and exponential families, Commun. Statist. 1 (1973) 189-216] a discrete function is called strongly unimodal if there exists a convex function such that  if . In this paper sufficient conditions that ensure the strong unimodality of a multivariate discrete distribution, are given. Examples of strongly unimodal multivariate discrete distributions are presented.  相似文献   

7.
8.
Motivated by wavelength-assignment problems for all-to-all traffic in optical networks, we study graph parameters related to sets of paths connecting all pairs of vertices. We consider sets of both undirected and directed paths, under minimisation criteria known as edge congestion and wavelength count; this gives rise to four parameters of a graph G: its edge forwarding index π(G), arc forwarding index , undirected optical index , and directed optical index .In the paper we address two long-standing open problems: whether the equality holds for all graphs, and whether indices π(G) and are hard to compute. For the first problem, we give an example of a family of planar graphs {Gk} such that . For the second problem, we show that determining either π(G) or is NP-hard.  相似文献   

9.
10.
It is conjectured by Erd?s, Graham and Spencer that if 1≤a1a2≤?≤as are integers with , then this sum can be decomposed into n parts so that all partial sums are ≤1. This is not true for as shown by a1=?=an−2=1, . In 1997 Sandor proved that Erd?s-Graham-Spencer conjecture is true for . Recently, Chen proved that the conjecture is true for . In this paper, we prove that Erd?s-Graham-Spencer conjecture is true for .  相似文献   

11.
12.
13.
Let G be a graph with minimum degree δ(G), edge-connectivity λ(G), vertex-connectivity κ(G), and let be the complement of G.In this article we prove that either λ(G)=δ(G) or . In addition, we present the Nordhaus-Gaddum type result . A family of examples will show that this inequality is best possible.  相似文献   

14.
15.
We improve parts of the results of [T. W. Cusick, P. Stanica, Fast evaluation, weights and nonlinearity of rotation-symmetric functions, Discrete Mathematics 258 (2002) 289-301; J. Pieprzyk, C. X. Qu, Fast hashing and rotation-symmetric functions, Journal of Universal Computer Science 5 (1) (1999) 20-31]. It is observed that the n-variable quadratic Boolean functions, for , which are homogeneous rotation symmetric, may not be affinely equivalent for fixed n and different choices of s. We show that their weights and nonlinearity are exactly characterized by the cyclic subgroup 〈s−1〉 of Zn. If , the order of s−1, is even, the weight and nonlinearity are the same and given by . If the order is odd, it is balanced and nonlinearity is given by .  相似文献   

16.
17.
For a given structure D (digraph, multidigraph, or pseudodigraph) and an integer r large enough, a smallest inducing r-regularization of D is constructed. This regularization is an r-regular superstructure of the smallest possible order with bounded arc multiplicity, and containing D as an induced substructure. The sharp upper bound on the number, ρ, of necessary new vertices among such superstructures for n-vertex general digraphs D is determined, ρ being called the inducing regulation number of D. For being the maximum among semi-degrees in D, simple n-vertex digraphs D with largest possible ρ are characterized if either or (where the case is not a trivial subcase of ).  相似文献   

18.
If G is a connected graph with vertex set V, then the degree distance of G, D(G), is defined as , where degw is the degree of vertex w, and d(u,v) denotes the distance between u and v. We prove the asymptotically sharp upper bound for graphs of order n and diameter d. As a corollary we obtain the bound for graphs of order n. This essentially proves a conjecture by Tomescu [I. Tomescu, Some extremal properties of the degree distance of a graph, Discrete Appl. Math. (98) (1999) 159-163].  相似文献   

19.
Let be the complement of the intersection graph G of a family of translations of a compact convex figure in Rn. When n=2, we show that , where γ(G) is the size of the minimum dominating set of G. The bound on is sharp. For higher dimension we show that , for n?3. We also study the chromatic number of the complement of the intersection graph of homothetic copies of a fixed convex body in Rn.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号