首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.  相似文献   

2.
Given a graph G, by a Grundy k-coloring of G we mean any proper k-vertex coloring of G such that for each two colors i and j, i<j, every vertex of G colored by j has a neighbor with color i. The maximum k for which there exists a Grundy k-coloring is denoted by Γ(G) and called Grundy (chromatic) number of G. We first discuss the fixed-parameter complexity of determining Γ(G)?k, for any fixed integer k and show that it is a polynomial time problem. But in general, Grundy number is an NP-complete problem. We show that it is NP-complete even for the complement of bipartite graphs and describe the Grundy number of these graphs in terms of the minimum edge dominating number of their complements. Next we obtain some additive Nordhaus-Gaddum-type inequalities concerning Γ(G) and Γ(Gc), for a few family of graphs. We introduce well-colored graphs, which are graphs G for which applying every greedy coloring results in a coloring of G with χ(G) colors. Equivalently G is well colored if Γ(G)=χ(G). We prove that the recognition problem of well-colored graphs is a coNP-complete problem.  相似文献   

3.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). A graph is called 2‐degenerate if any of its induced subgraph has a vertex of degree at most 2. The class of 2‐degenerate graphs properly contains seriesparallel graphs, outerplanar graphs, non ? regular subcubic graphs, planar graphs of girth at least 6 and circle graphs of girth at least 5 as subclasses. It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a′(G)?Δ + 2, where Δ = Δ(G) denotes the maximum degree of the graph. We prove the conjecture for 2‐degenerate graphs. In fact we prove a stronger bound: we prove that if G is a 2‐degenerate graph with maximum degree Δ, then a′(G)?Δ + 1. © 2010 Wiley Periodicals, Inc. J Graph Theory 69: 1–27, 2012  相似文献   

4.
A set of vertices D of a graph G is geodetic if every vertex of G lies on a shortest path between two not necessarily distinct vertices in D. The geodetic number of G is the minimum cardinality of a geodetic set of G.We prove that it is NP-complete to decide for a given chordal or chordal bipartite graph G and a given integer k whether G has a geodetic set of cardinality at most k. Furthermore, we prove an upper bound on the geodetic number of graphs without short cycles and study the geodetic number of cographs, split graphs, and unit interval graphs.  相似文献   

5.
Precoloring extension on unit interval graphs   总被引:1,自引:0,他引:1  
In the precoloring extension problem a graph is given with some of the vertices having preassigned colors and it has to be decided whether this coloring can be extended to a proper k-coloring of the graph. Answering an open question of Hujter and Tuza [Precoloring extension. III. Classes of perfect graphs, Combin. Probab. Comput. 5 (1) (1996) 35-56], we show that the precoloring extension problem is NP-complete on unit interval graphs.  相似文献   

6.
For a finite simple edge-colored connected graph G (the coloring may not be proper), a rainbow path in G is a path without two edges colored the same; G is rainbow connected if for any two vertices of G, there is a rainbow path connecting them. Rainbow connection number, rc(G), of G is the minimum number of colors needed to color its edges such that G is rainbow connected. Chakraborty et al. (2011) [5] proved that computing rc(G) is NP-hard and deciding if rc(G)=2 is NP-complete. When edges of G are colored with fixed number k of colors, Kratochvil [6] proposed a question: what is the complexity of deciding whether G is rainbow connected? is this an FPT problem? In this paper, we prove that any maximal outerplanar graph is k rainbow connected for suitably large k and can be given a rainbow coloring in polynomial time.  相似文献   

7.
Call a vertex of a vertex-colored simple graph isolated if all its neighbors have colors other than its own. A. J. Goldman has asked: When is it possible to color b vertices of a graph black and the remaining w vertices white so that no vertex is isolated? We prove (1) if G is connected and has minimum degree 2, it is always possible unless b or w is 1; (2) if G is 2-connected, then for any pair (b, w) there is a coloring in which both monochromatic subgraphs are connected; (3) if G has vertices of degree 1, a necessary condition for a (b, w) coloring without isolates to exist is that there be a solution to a certain knapsack inequality. Next, statements generalizing (1) and (2) to n colors are presented, and current knowledge about their truth is discussed. Then various refinements of (1) and (3), more complicated to state and prove, are given. For instance, with the hypotheses of (1) at least one of the monochromatic subgraphs may be chosen to be connected. Also, the necessary knapsack inequality of (3) is, in most cases, sufficient. Throughout, some consideration is given to the algorithmic complexity of coloring (if possible) without isolates. For most graphs which might arise in practice there is an efficient algorithm for the 2-color problem. However, for arbitrary graphs the 2-(or more) color problem is NP-complete.  相似文献   

8.
In this paper, the mutual exclusion scheduling problem is addressed. Given a simple and undirected graph G and an integer k, the problem is to find a minimum coloring of G such that each color is used at most k times. When restricted to interval graphs or related classes like circular-arc graphs and tolerance graphs, the problem has some applications in workforce planning. Unfortunately, the problem is shown to be NP-hard for interval graphs, even if k is a constant greater than or equal to four [H.L. Bodlaender and K. Jansen Restrictions of graph partition problems. Part I, Theoretical Computer Science 148(1995) pp. 93-109]. Several polynomial-time solvable cases significant in practice are exhibited here, for which we took care to devise simple and efficient algorithms (in particular linear-time and space algorithms). On the other hand, by reinforcing the NP-hardness result of Bodlaender and Jansen, we obtain a more precise cartography of the complexity of the problem for the classes of graphs studied.  相似文献   

9.
A k-coloring (not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colors i and j the subgraph induced by the edges whose endpoints have colors i and j is acyclic. We consider some generalized acyclic k-colorings, namely, we require that each color class induces an acyclic or bounded degree graph. Mainly we focus on graphs with maximum degree 5. We prove that any such graph has an acyclic 5-coloring such that each color class induces an acyclic graph with maximum degree at most 4. We prove that the problem of deciding whether a graph G has an acyclic 2-coloring in which each color class induces a graph with maximum degree at most 3 is NP-complete, even for graphs with maximum degree 5. We also give a linear-time algorithm for an acyclic t-improper coloring of any graph with maximum degree d assuming that the number of colors is large enough.  相似文献   

10.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a′(G) ? Δ + 2, where Δ = Δ(G) denotes the maximum degree of the graph. If every induced subgraph H of G satisfies the condition |E(H)| ? 2|V(H)|?1, we say that the graph G satisfies Property A. In this article, we prove that if G satisfies Property A, then a′(G) ? Δ + 3. Triangle‐free planar graphs satisfy Property A. We infer that a′(G) ? Δ + 3, if G is a triangle‐free planar graph. Another class of graph which satisfies Property A is 2‐fold graphs (union of two forests). © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

11.
A connected matching in a graph is a collection of edges that are pairwise disjoint but joined by another edge of the graph. Motivated by applications to Hadwiger’s conjecture, Plummer, Stiebitz, and Toft (2003) introduced connected matchings and proved that, given a positive integer k, determining whether a graph has a connected matching of size at least k is NP-complete. Cameron (2003) proved that this problem remains NP-complete on bipartite graphs, but can be solved in polynomial-time on chordal graphs. We present a polynomial-time algorithm that finds a maximum connected matching in a chordal bipartite graph. This includes a novel edge-without-vertex-elimination ordering of independent interest. We give several applications of the algorithm, including computing the Hadwiger number of a chordal bipartite graph, solving the unit-time bipartite margin-shop scheduling problem in the case in which the bipartite complement of the precedence graph is chordal bipartite, and determining–in a totally balanced binary matrix–the largest size of a square sub-matrix that is permutation equivalent to a matrix with all zero entries above the main diagonal.  相似文献   

12.
COMPUTATIONAL COMPLEXITY OF(2,2) PATH CHROMATIC NUMBER PROBLEM   总被引:2,自引:0,他引:2  
Is there a normal Pk coloring using r colors for a given graph ? This problem is called the (k, r) path chromatic number problem of graphs. This paper proves that the (2, 2) path chromatic number problem of graphs with maximum degree 4 is NP-complete.  相似文献   

13.
A proper edge coloring c:E(G)→Z of a finite simple graph G is an interval coloring if the colors used at each vertex form a consecutive interval of integers. Many graphs do not have interval colorings, and the deficiency of a graph is an invariant that measures how close a graph comes to having an interval coloring. In this paper we search for tight upper bounds on the deficiencies of k-regular graphs in terms of the number of vertices. We find exact values for 1?k?4 and bounds for larger k.  相似文献   

14.
Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G=(V,E) and an integer k≥0, we ask whether there exists a subset VV with |V|≥k such that the induced subgraph G[V] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time -approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.  相似文献   

15.
16.
This paper is the second part of a study devoted to the mutual exclusion scheduling problem. Given a simple and undirected graph G and an integer k, the problem is to find a minimum coloring of G such that each color is used at most k times. The cardinality of such a coloring is denoted by χ(G,k). When restricted to interval graphs or related classes like circular-arc graphs and tolerance graphs, the problem has some applications in workforce planning. Unfortunately, the problem is shown to be NP-hard for interval graphs, even if k is a constant greater than or equal to four [H.L. Bodlaender, K. Jansen, Restrictions of graph partition problems. Part I. Theoret. Comput. Sci. 148 (1995) 93-109]. In this paper, the problem is approached from a different point of view by studying a non-trivial and practical sufficient condition for optimality. In particular, the following proposition is demonstrated: if an interval graph G admits a coloring such that each color appears at least k times, then χ(G,k)=⌈n/k⌉. This proposition is extended to several classes of graphs related to interval graphs. Moreover, all our proofs are constructive and provide efficient algorithms to solve the MES problem for these graphs, given a coloring satisfying the condition in input.  相似文献   

17.
A vertex k-coloring of graph G is distinguishing if the only automorphism of G that preserves the colors is the identity map. It is proper-distinguishing if the coloring is both proper and distinguishing. The distinguishing number ofG, D(G), is the smallest integer k so that G has a distinguishing k-coloring; the distinguishing chromatic number ofG, χD(G), is defined similarly.It has been shown recently that the distinguishing number of a planar graph can be determined efficiently by counting a related parameter-the number of inequivalent distinguishing colorings of the graph. In this paper, we demonstrate that the same technique can be used to compute the distinguishing number and the distinguishing chromatic number of an interval graph. We make use of PQ-trees, a classic data structure that has been used to recognize and test the isomorphism of interval graphs; our algorithms run in O(n3log3n) time for graphs with n vertices. We also prove a number of results regarding the computational complexity of determining a graph’s distinguishing chromatic number.  相似文献   

18.
《Discrete Mathematics》2023,346(1):113162
The graph coloring game is a two-player game in which the two players properly color an uncolored vertex of G alternately. The first player wins the game if all vertices of G are colored, and the second wins otherwise. The game chromatic number of a graph G is the minimum integer k such that the first player has a winning strategy for the graph coloring game on G with k colors. There is a lot of literature on the game chromatic number of graph products, e.g., the Cartesian product and the lexicographic product. In this paper, we investigate the game chromatic number of the strong product of graphs, which is one of major graph products. In particular, we completely determine the game chromatic number of the strong product of a double star and a complete graph. Moreover, we estimate the game chromatic number of some King's graphs, which are the strong products of two paths.  相似文献   

19.
A vertex coloring of a graph G is an assignment of colors to the vertices of G so that every two adjacent vertices of G have different colors. A coloring related property of a graphs is also an assignment of colors or labels to the vertices of a graph, in which the process of labeling is done according to an extra condition. A set S of vertices of a graph G is a dominating set in G if every vertex outside of S is adjacent to at least one vertex belonging to S. A domination parameter of G is related to those structures of a graph that satisfy some domination property together with other conditions on the vertices of G. In this article we study several mathematical properties related to coloring, domination and location of corona graphs. We investigate the distance-k colorings of corona graphs. Particularly, we obtain tight bounds for the distance-2 chromatic number and distance-3 chromatic number of corona graphs, through some relationships between the distance-k chromatic number of corona graphs and the distance-k chromatic number of its factors. Moreover, we give the exact value of the distance-k chromatic number of the corona of a path and an arbitrary graph. On the other hand, we obtain bounds for the Roman dominating number and the locating–domination number of corona graphs. We give closed formulaes for the k-domination number, the distance-k domination number, the independence domination number, the domatic number and the idomatic number of corona graphs.  相似文献   

20.
We consider the sandwich problem, a generalization of the recognition problem introduced by Golumbic et al. (1995) [15], with respect to classes of graphs defined by excluding induced subgraphs. We prove that the sandwich problem corresponding to excluding a chordless cycle of fixed length k is NP-complete. We prove that the sandwich problem corresponding to excluding Kr?e for fixed r is polynomial. We prove that the sandwich problem corresponding to 3PC(⋅,⋅)-free graphs is NP-complete. These complexity results are related to the classification of a long-standing open problem: the sandwich problem corresponding to perfect graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号