首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long TiO2 hollow fibers with mesoporous walls have been fabricated with the sol-gel combined two-capillary spinneret electrospinning technique using a triblock copolymer (Pluronic, P123, (H(C2H5O)20(C3H7O)70 (C2H5O)20OH) as a pore-directing agent. The as-prepared hollow fibers were as long as 30 cm with an outer diameter of 0.1-4 microm and wall thickness of 60-500 nm. The diameters and wall thicknesses of the hollow fibers could be tuned by adjusting the electrospinning parameters. The fiber walls were composed of mesopores 6.7 nm in diameter as calculated from the N2 adsorption/desorption isotherm. The high-resolution TEM (HR-TEM) images exhibited that the mesopores were hexagonally aligned with a low order because of the curving of the pores. When comparing with other nanostructured TiO2 materials such as commercial TiO2 nanoparticles (P25, Degussa) and mesoporous TiO2 powders, the hollow fibers exhibited higher photocatalytic activities toward degradation of methylene blue and gaseous formaldehyde.  相似文献   

2.
Magnetite nanoparticles of Fe3O4 were found to assemble into monodisperse hollow Fe3O4 microspheres with tunable diameters ranging from 200 to 400 nm and open pores on the shells in ethylene glycol in the presence of dodecylamine (DDA). The oriented assembly of nanoparticles conferred the individual hollow Fe3O4 microspheres a remarkable feature of single crystals. The morphologies of the products could be easily manipulated by varying the synthesis parameters. Increasing the concentration of DDA led to an obvious shape evolution of the products from rhombic nanoparticles to hollow microspheres, solid microspheres, and finally irregular nanoparticles, which were mainly attributed to the special self-assembly phenomenon of Fe3O4 nanoparticles in the solvothermal process.  相似文献   

3.
同轴静电纺丝法在纳米中空TiO2纤维中填充Ag的应用   总被引:1,自引:0,他引:1  
以聚乙烯吡咯烷酮(PVP)溶胶/钛酸四正丁酯和PVP溶胶/银颗粒为前驱体, 以共轴静电纺丝法制备了银填充的TiO2中空纳米纤维. 将双组分纤维在200 ℃下热处理去除乙醇与表面吸附水后, 继而在空气气氛中焙烧至600 ℃, 可以得到在内表面上沉积银颗粒的TiO2纳米管, 银颗粒的直径为5-40 nm, TiO2纳米管的外径150-300 nm, 管臂厚10-20 nm. 用红外吸收光谱(IR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等测试手段对超细纤维进行了表征. 中空纤维的直径和管壁可以通过改变电纺参数来调节. 与Ag-TiO2纳米纤维、TiO2纳米中空纤维、TiO2纳米纤维及TiO2纳米粉体相比较, Ag颗粒填充的TiO2纳米中空纤维在光分解亚甲基蓝上表现出了更好的光催化性能.  相似文献   

4.
同轴静电纺丝法在纳米中空Ti02纤维中填充Ag的应用   总被引:2,自引:0,他引:2  
以聚乙烯吡咯烷酮(PVP)溶胶,钛酸四正丁酯和PVP溶胶,银颗粒为前驱体,以共轴静电纺丝法制备了银填充的TiO2中空纳米纤维.将双组分纤维在200℃下热处理去除乙醇与表面吸附水后,继而在空气气氛中焙烧至600℃.可以得到在内表面上沉积银颗粒的TiO2纳米管,银颗粒的直径为5-40 nm,TiO2纳米管的外径150-300 nm.管臂厚10-20 nm.用红外吸收光谱(IR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等测试手段对超细纤维进行了表征.中空纤维的直径和管壁可以通过改变电纺参数来调节.与Ag-TiO2纳米纤维、TiO2纳米中空纤维、TiO2纳米纤维及TiO2纳米粉体相比较,Ag颗粒填充的TiO2纳米中空纤维在光分解亚甲基蓝上表现出了更好的光催化性能.  相似文献   

5.
We prepared submicron-scale spherical hollow particles of anatase TiO2 by using a polystyrene-bead template. The obtained particles were very uniform in size, with a diameter of 490 nm and a shell thickness of 30 nm. The Brunauer-Emmett-Teller surface area measurements revealed a large value of 70 m2/g. The photocatalytic property was investigated by the complete decomposition of gaseous isopropyl alcohol under UV irradiation. It was indicated that the activity of the hollow spheres was 1.8 times higher than that of the conventional P25 TiO2 nanoparticles with a diameter of 30 nm. Furthermore, we fabricated a dye-sensitized solar cell (DSC) using an electrode of the TiO2 hollow spheres, and examined the photovoltaic performance under simulated sunlight. Although the per-area efficiency was rather low (1.26%) because of a low area density of TiO2 on the electrode, the per-weight efficiency was 2.5 times higher than those of the conventional DSCs of TiO2.  相似文献   

6.
采用光还原方法制备了核-壳结构的Ag/TiO2纳米复合粒子, 通过TEM、UV-Vis光谱和XRD表征了不同TiO2浓度下Ag/TiO2纳米复合粒子的结构和光学性质. UV-Vis光谱证明了银颗粒的存在, 且复合粒子中的银粒径随着TiO2含量的增加而增加, 同时随着TiO2浓度的增加, 银的吸收峰出现明显的增强和展宽;从TEM照片 发现, Ag/TiO2纳米复合粒子是一种以Ag为核, 外面包覆一层TiO2的核-壳结构, TiO2浓度和Ag+浓度的增加, 使得复合粒子的银颗粒粒径增大. 用Z-扫描技术, 以锁模Ti:sapphire飞秒激光器发出的脉宽为130 fs激光做光源, 在790 nm波长的光作用下, 研究了0.5%(w)Ag+含量, 不同TiO2浓度的Ag/TiO2纳米复合粒子的非线性光学特性. 结果发现, 在790 nm激光作用下, 0.25%(w)TiO2样品膜有双光子吸收和自聚焦非线性折射现象; 而当TiO2浓度为0.70%(w)时, 样品膜的非线性吸收由反饱和吸收转变为饱和吸收.  相似文献   

7.
Mesoporous Au/TiO(2) nanocomposite microspheres have been synthesized by using a microemulsion-based bottom-up self-assembly (EBS) process starting from monodisperse gold and titania nanocrystals as building blocks. The microspheres had large surface areas (above 270 m(2) g(-1)) and open mesopores (about 5 nm), which led to the adsorption-driven concentration of organic molecules in the vicinity of the microspheres. Au nanoparticles, which were stably confined within the microspheres, enhanced the absorption over the broad UV/Vis/NIR spectroscopic range, owing to their strong surface plasmon resonance (SPR); as a result, the Au nanoparticles promoted the visible-light photo-induced degradation of organic compounds.  相似文献   

8.
首先用聚乙烯亚胺(PEI)对粒径为360 nm的单分散无皂聚苯乙烯(PSt)乳胶粒进行修饰,得到表面荷正电的PSt种子乳液,然后将其滴加到溶有钛酸正丁酯(TBT)的乙醇与水的混合介质中,通过溶胶-凝胶(sol-gel)法制备出了核壳结构PSt/TiO2复合微球,系统研究了体系pH和TBT用量对复合微球结构形态的影响.研究表明,酸性条件不利于核壳结构PSt/TiO2复合微球的形成;当体系pH值为7.2时,可得到包覆完整、TiO2壳层厚度均一的PSt/TiO2复合微球,此后随着体系pH值的升高,包覆厚度逐渐提高;当pH值升高到11.0时,壳层厚度达到最大,但出现了包覆层不完整的复合微球.在固定聚合体系pH为8.5,EtOH/H2O质量比为100/6,表面修饰PSt种子乳液用量为0.5 g(固含量为4%)的条件下,随着TBT用量从0.01 g增加到0.16 g,复合微球壳层厚度从约0 nm逐渐增加到60 nm;当TBT用量增加到0.32 g时,壳层厚度迅速降至12nm,微球表面变得粗糙,并出现大量未包覆微粒;此后随着TBT用量的增加,包覆层厚度逐渐减少,未包覆微球逐渐增多.结果显示,当复合微球中TiO2包覆层达到一定厚度时,经煅烧后才能得到形貌完整的TiO2中空微球.  相似文献   

9.
Well-designed, monodispersed porous ZnO hollow microspheres with controlled hole-opening were successfully synthesized by a facile two-step solution route at low temperature. The hollow microspheres having average diameter of 3-4 μm showed time-dependent hole-opening, i.e. 4-100% for 15-75 min. The hole-opening percentage increases linearly with time until complete opening. The ZnO hollow microspheres also exhibited a high surface area (34 m(2) g(-1)), a large pore volume (0.19 cm(3) g(-1)) and an average pore diameter of 3.8 nm. A plausible growth mechanism for the formation of ZnO hollow microspheres was also proposed.  相似文献   

10.
Hollow cadmium molybdate microspheres have been successfully prepared via a template-free aqueous solution method with the assistance of NaCl at room temperature. The structure and morphology of the CdMoO(4) hollow microspheres were characterized by X-ray diffraction, field-emission scanning electron microscopy, and transmission electron microscopy. The microspheres have diameters of 3-6 microm and hollow interiors of 2-3 microm. The shell is composed of numerous single-crystalline nanorods with diameters of 30-120 nm and lengths of 1-2 microm which are radially oriented to the center. A certain concentration of NaCl plays a key important role in the formation process of hollow microspheres, which might provide a suitable chemical environment to favor the formation of hollow CdMoO(4) microspheres. A possible NaCl-induced Ostwald ripening process is proposed for the formation of hollow CdMoO(4) microspheres on the basis of scanning electron microscopy observation of intermediate products at different precipitation stages.  相似文献   

11.
A simple sonochemical route has been successfully developed to synthesize SnO_2 hollow microspheres.Theobtained sample is characterized by XRD,TEM,XPS and UV-visible spectrophotometer.The TEM image of thesample at high magnification shows that the shell of the hollow sphere is composed of 3-5 nm SnO_2 nanoparticles.A possible formation mechanism of the hollow spheres is briefly discussed.  相似文献   

12.
采用阳离子聚苯乙烯微球作为模板,钛酸四丁酯为钛源,氨水为催化剂,制备了中空TiO_2微球.采用X射线衍射、扫描电镜及比表面测定仪对其形貌和结构进行了表征,并考察了模板粒径、钛源用量以及催化剂用量对中空TiO_2微球形貌的影响.通过物理共混法将其引入至聚丙烯酸酯乳液中并成膜,研究了复合薄膜的保温性能、抗紫外性能及力学性能.结果表明,锐钛矿相中空TiO_2微球模板粒径、钛源用量以及催化剂用量影响中空TiO_2微球的空心尺寸、壁厚及壳层致密性.中空TiO_2微球可显著提升聚丙烯酸酯薄膜的保温性能、抗紫外性能和力学性能.采用不同粒径的模板制备的中空TiO_2微球对复合薄膜的各项性能均有影响,其中模板粒径为140 nm时复合薄膜性能最优,光反射率提升63%,导热系数降低27%,且在波长小于360 nm范围内,紫外透过率几乎为0,抗张强度增加100%,断裂伸长率提升62%.  相似文献   

13.
以TiOSO4和硅溶胶为原料, 加入甲酰胺作为干燥控制化学添加剂, 采用W/O乳状液中的溶胶-凝胶法制备TiO2/SiO2凝胶微球, 通过正硅酸乙酯母液浸泡、溶剂交换、陈化和常压干燥技术制备TiO2/SiO2气凝胶微球, 采用光学显微镜、SEM、TEM和BET比表面及孔分布测定等手段对所得样品进行表征. 典型的气凝胶微球样品是由粒径15 nm左右, 粒度分布相当均匀的球状纳米粒子构成的轻质纳米多孔材料, 表观密度为177 kg•m-3, 比表面积372 m2•g-1, 平均孔径22.78 nm, 孔隙率高达92.0%, 微球的宏观粒径为50 m. 依据制备条件的变化, TiO2/SiO2气凝胶微球的宏观粒径可控在10~200 m之间, 表观密度为150~300 kg•m-3, 比表面积为300~400 m2•g-1, 平均孔径在18.71~22.78 nm之间变化.  相似文献   

14.
The hybrid microspheres with polystyrene core coated by titania nanoparticles were prepared by miniemulsion polymerization, and the as-prepared samples were characterized by SEM, XRD, TG-DTA, XPS, and SPS techniques. TiO2 nanoparticles experienced two processes of phase transition, i.e., amorphous to anatase and anatase to rutile at the calcining temperature range from 400 to 1000 degrees C. The phase transformation temperature of TiO2 hybrid microspheres from anatase to rutile was increased by about 300 degrees C due to the blocking function of calcined polymer remainder. SPS results present that the band-gap of hybrid microspheres is 3.2-3.4 eV, which is larger than that of pure TiO2. The maximum intensity of the SPS signal is about 3 times larger for the hybrid material as compared to the pure TiO2. In addition, the photocatalytic degradation rate of TiO2 hybrid microspheres was 15% faster than that of pure TiO2 in the experiment of the photocatalytic degradation of methyl orange.  相似文献   

15.
采用模板辅助法制备了SnO2/TiO2复合空心球,样品直径为1.5~4.0μm,比表面积达到了92.9 m^2·g^-1,复合空心球表现出优越的光散射性能.以这种复合空心球作为染料敏化太阳能电池的光阳极,电池的光电转换效率可达到7.72%,高于SnO2微米球(2.70%)和TiO2微米球(6.26%).此外,以锐钛矿型TiO2纳米晶作为底层,SnO2/TiO2复合空心球作为光散射层制备的双层结构光阳极,电池光电转换效率进一步提升至8.43%.  相似文献   

16.
Submicron hollow spheres are an interesting class of materials that receive significant attention nowadays. Closed and mechanically robust homogeneous hollow titania microspheres with as much shell thickness as 130 nm were fabricated by coating polystyrene beads with titania nanoparticles using sol–gel chemistry and subsequently removing the core either via heating or a chemical dissolution process. The thickness of the titania shell deposited on polystyrene core was finely tuned between 100 and 130 nm by varying the concentration of titania precursor, i.e., Ti(OEt)4 salt from 0.5 to 2 mM during the coating process. The obtained hybrid core–shell particles and hollow microspheres were characterized by scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, X-ray diffraction, and thermo-gravimetric analysis. The approach employed is well suited to the preparation of titania-coated polystyrene hybrid particles and hollow titania spheres, which can find their applications as novel building blocks with unique optical properties for fabrication of advanced materials, catalyst, and drug delivery system.  相似文献   

17.
The formation of mesoporous TiO2 spheres via a facile chemical process   总被引:6,自引:0,他引:6  
The mesoporous TiO(2) solid and hollow spheres have been synthesized via a controllable and simple chemical route. Structural characterization indicates that these TiO(2) mesoporous spheres after calcined at 500 degrees C have an obvious mesoporous structure with the diameters of 200-300 nm for solid spheres and 200-500 nm for hollow spheres. The average pore sizes and BET surface areas of the mesoporous TiO(2) solid and hollow spheres are 6.8, 7.0 nm and 162, 90 m(2)/g, respectively. Optical adsorption investigation shows that TiO(2) solid and hollow spheres possess a direct band gap structure with the optical band gap of 3.68 and 3.75 eV, respectively. A possible formation mechanism for TiO(2) solid and hollow spheres is discussed.  相似文献   

18.
We report a large-scale self-etching approach for the synthesis of monodispersed mesoporous F-TiO2 hollow microspheres. The self-etching derived from HF was elucidated by the morphology, chemical composition, and crystal size evolutions from solid to hollow microspheres with the increase in the concentration of H2SO4. The resulting TiO2 hollow microspheres exhibited ease for the concurrent membrane filtration and photocatalysis, providing high potential for engineering application in advanced water treatment, for not only increasing water production but also improving water quality.  相似文献   

19.
Microporous organic networks (MONs) have been considered as an ideal substrate to stabilize active metal nanoparticles. However, the development of highly water‐dispersible hollow MONs nanostructures which can serve as both the reducing agent and stabilizer is highly desirable but still challenging. Here we report a template‐assisted method to synthesize hollow microporous organic network (H‐MON) spheres using silica spheres as hard template and 1,3,5‐triethynylbenzene as the building blocks through a Glaser coupling reaction. The obtained water‐dispersible H‐MON spheres bearing sp‐ and sp2‐hybridized carbon atoms possess a highly conjugated electronic structure and show low reduction potential; thus, they can serve as a reducing agent and stabilizer for electroless deposition of highly dispersed Pd clusters to form a Pd/H‐MON spherical hollow nanocomposite. Benefitting from their high porosity, large surface area, and excellent solution dispersibility, the as‐prepared Pd/H‐MON hollow nanocomposite exhibits a high catalytic performance and recyclability toward the reduction of 4‐nitrophenol.  相似文献   

20.
简单方法制备羟基磷灰石中空微球   总被引:1,自引:0,他引:1  
无需添加任何有机物和金属离子, 以易得的中空球形碳酸钙(CaCO3)与磷酸氢二钠(Na2HPO4)作为反应物在常压下制备出羟基磷灰石中空微球. 通过场发射扫描电子显微镜(FESEM)、扫描电子显微镜(SEM), X射线粉末衍射(XRD)等手段对制备的羟基磷灰石中空微球的结构、组成和形貌进行了表征, 考察了不同反应温度对中空球形貌的影响. 实验结果表明, 所制备的羟基磷灰石微球是由短针状的纳米粒子组成的, 直径为2-4 μm. 对反应机理进行了初步探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号