首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 582 毫秒
1.
The photocatalytic activity of TiO2 films deposited on different substrates by the spray-drying method using suspensions of commercially available TiO2 (Degussa P25 or Tronox) as starting material was studied. The influence of the type of the initial TiO2, preparation conditions (temperature of the substrate during the film deposition, temperature of the post-deposition annealing), substrate material (glass, fused silica, stainless steel and graphite), the presence of additives in the spraying suspension (polyethylene glycol, ethylene glycol and acetylacetone) and its sonication before spraying on the morphology, size of crystallites and phase composition (rutile/anatase ratio) was studied. Optimal conditions for spray deposition of the films are suggested.  相似文献   

2.
《Solid State Ionics》2006,177(17-18):1443-1449
Cubic and tetragonal Y2O3-doped ZrO2 thin films were deposited with a dense surface morphology by electrostatic spray deposition. Four dependent process parameters – substrate temperature, precursor solution flow rate, nozzle to substrate distance and the deposition time – have been used to control the process. Temperature dependent Raman spectroscopy and X-ray diffraction were performed in order to investigate the crystallization behavior and structural properties.  相似文献   

3.
Tin oxide (SnO2) thin films for gas sensing applications were prepared using electrostatic spray deposition method under optimum deposition conditions. It is shown in the paper that desired film morphology can be obtained by controlling different spray parameters (liquid properties, applied voltage, nozzle-substrate distance and substrate temperature). The spray parameters were optimized with respect to droplet diameter and applied voltage. An empirical relationship between critical voltage and different spray parameters was established for optimization. The morphology of the films prepared using these optimized spray parameters were investigated using X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM).  相似文献   

4.
Electrochromic effect of cobalt oxide thin films was studied as a function of substrate temperature (573–673 K). Tricobalt tetraoxide (Co3O4) thin films were deposited on glass and fluorine-doped tin oxide (FTO) substrates by nebulized spray technique using cobalt nitrate as precursor material. The XRD patterns indicated (311) plane was dominant for all the films irrespective of the deposition temperature. Williamson-Hall (W-H) analysis was made to understand the strain variation in the prepared Co3O4 films under different deposition temperature by employing uniform deformation model (UDM). Scanning electron microscopy images revealed porous morphology for the film prepared at 623 K. The optical parameters such as refractive index (n), extinction coefficient (k), and band gap were derived from UV-visible spectra of Co3O4 films. The electrochromic performance of the deposited Co3O4 films was analyzed through cyclic voltammetry, chronocoulometry, chronoamperometry, and iono-optical studies.  相似文献   

5.
Non-stoichiometric ternary chalcogenides (Zn,Fe)S were prepared in the film form by pyrolytic spray deposition technique, using air/nitrogen as the carrier gas. The precursor solution comprised of ZnCl2, FeCl2 and thiourea. The depositions were carried out under optimum conditions of experimental parameters viz. carrier gas (air/nitrogen) flow rate, concentration of precursor constituents, nozzle substrate distance and temperature of quartz substrate. The deposited thin films were later sintered in argon at 1073 K for 120 min.The structural, compositional and optical properties of the sintered thin films were studied. X-ray diffraction studies of the thin films indicated the presence of (Zn,Fe)S solid solution with prominent cubic sphalerite phase while surface morphology as determined by scanning electron microscopy (SEM) revealed a granular structure.The chemical composition of the resulting thin films as analyzed by energy dispersive X-ray analysis (EDAX) reflected the composition of the precursor solutions from which the depositions were carried out with Fe at% values ranging from 0.4 up to 33.SEM micrographs of thin films reveal that the grain sizes of the thin films prepared using air as carrier gas and N2 as carrier gas are in the vicinity of 300 and 150 nm, respectively.The diffuse transmittance measurements for thin films, as a function of wavelength reveal the dependence of direct optical band gap on Fe content and type of phase.  相似文献   

6.
J. Chen 《哲学杂志》2013,93(27):4341-4350
The structure and microstructure of La0.8MnO3 thin films on SrTiO3 substrates, fabricated by pulsed laser deposition at substrate temperatures of 873?K and 1073?K, have been studied by transmission electron microscopy. In both films, columnar growth morphology has been observed. The columnar grain size is found to increase with increasing substrate temperature. In the film deposited at a substrate temperature of 1073?K, there is only one rhombohedral phase. However, two phases, a rhombohedral one and an orthorhombic one, have been observed in the film deposited at 873?K.  相似文献   

7.
ZnO thin films were fabricated using zinc chloride and zinc acetate precursors by the spray pyrolysis technique on FTO coated glass substrates. The ZnO films were grown in different deposition temperature ranges varying from 400 to 550 °C. Influences of substrate temperature and zinc precursors on crystal structure, morphology and optical property of the ZnO thin films were investigated. XRD patterns of the films deposited using chloride precursor indicate that (1 0 1) is dominant at low temperatures, while those deposited using acetate precursor show that (1 0 1) is dominant at high temperatures. SEM images show that deposition temperature and type of precursor have a strong effect on the surface morphology. Optical measurements show that ZnO films are obviously influenced by the substrate temperatures and different types of precursor solutions. It is observed that as temperature increases, transmittance decreases for ZnO films obtained using zinc chloride precursor, but the optical transmittance of ZnO films obtained using zinc acetate precursor increases as temperature increases.  相似文献   

8.
Thin lithium niobate-tantalate (LiNb0.5Ta0.5O3) films are studied at the initial stage of deposition from a thermal plasma. The effect of two deposition parameters (the substrate temperature and the deposition rate) on the film morphology, the film crystallinity, and the density of nuclei growing on a (0001) sapphire substrate are investigated. It is shown that the crystalline structure and roughness of a film are determined, for the most part, in the initial growth stage and therefore depend directly on both parameters. At the optimum temperatures and growth rates for obtaining good characteristics of (0006) texture, crystallinity, and surface roughness of the films, the film nuclei on the substrate have a high density and good epitaxial orientation to it. If the growth conditions are not optimum, the islands are either amorphous or have a low density on the substrate surface. The nucleation activation energy is observed to decrease as the deposition rate increases, which supports the assumption that the species that are active in film deposition are “hot” clusters forming in an oxygen-argon plasma in the immediate vicinity of the substrate.  相似文献   

9.
Aluminum-doped indium sulfide thin films are deposited on glass by spray pyrolysis technique. The structure and the surface morphology of these films were characterized by X-ray diffraction and atomic force microscopy. The effects of aluminum ratio z and substrate temperature T s, on the film structure and grain size are discussed. The influence of aluminum ratio on surface morphology is revealed by scanning electron microscope. Besides, energy dispersive spectrometry technique is used to compare atomic aluminum concentration in the film with aluminum ratio z in spray solution. Optical properties are studied by a spectrophotometer in the wavelength range 350–850 nm, at room temperature. Optical transmission and grain size are found to be maximal for z = 1.8 %. Moreover, band-gap energy is found to increase with aluminum ratio.  相似文献   

10.
In this work, thin films of zinc oxide (ZnO) for gas-sensor applications were deposited on platinum coated alumina substrate, using electrostatic spray deposition (ESD) technique. As precursor solution zinc acetate in ethanol was used. Scanning electron microscopy (SEM) evaluation showed a porous and homogeneous film morphology and the energy dispersive X-ray analysis (EDX) confirmed the composition of the films with no presence of other impurities. The microstructure studied with X-ray diffraction (XRD) and Raman spectroscopy indicated that the ZnO oxide films are crystallized in a hexagonal wurtzite phase. The films showed good sensitivity to 1 ppm nitrogen dioxide (NO2) at 300 °C while a much lower sensitivity to 12 ppm hydrogen sulphide (H2S).  相似文献   

11.
An aqueous solution of cupric nitrate trihydrate (Cu(NO3)2·3H2O) modified with cetyltrimetylammonium bromide (CTAB) is used to deposit CuO films on glass substrate by chemical spray pyrolysis technique. The thermal analysis shows that the dried CTAB doped precursor decomposes by an exothermic reaction and suggests that minimum substrate temperature for film deposition should be greater than 270 °C. X-ray diffraction (XRD) studies indicate the formation of monoclinic CuO with preferential orientation along (0 0 2) plane for all film samples. The CTAB used as cationic surfactant in precursor results in the suppression of grain growth in films along the (1 1 0), (0 2 0) and (2 2 0) crystal planes of CuO. Surfactant modified films showed an increase in crystallite size of 14 nm at substrate temperature of 300 °C. The scanning electron micrographs (FESEM) confirm the uniform distribution of facets like grains on the entire area of substrate. CTAB modified films show a significant reduction in the particle agglomeration. Electrical studies of the CuO films deposited at substrate temperature of 300 °C with and without surfactant reveal that the CTAB doping increase the activation energy of conduction by 0.217 eV and room temperature response to ammonia by 9%. The kinetics of the ammonia gas adsorption on the film surface follows the Elovich and Diffusion models.  相似文献   

12.
Transparent conductive SnO2:F thin films with textured surfaces were fabricated on soda-lime-silica glass substrates by spray pyrolysis. Structure, morphology, optical and electrical properties of the films were investigated. Results show that the film structure, morphology, haze, transmittance and sheet resistance are dependent on the substrate temperature and film thickness. An optimal 810 nm-thick SnO2:F film with textured surface deposited at 520 °C exhibits polycrystalline rutile tetragonal structure with a (2 0 0) orientation. The sheet resistance, average transmittance in visible region, and haze of this film were 8 Ω/□, 80.04% and 11.07%, respectively, which are suitable for the electrode used in the hydrogenated amorphous silicon solar cells.  相似文献   

13.
Bi0.5(Na0.7K0.2Li0.1)0.5TiO3 (BNKLT) thin films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.  相似文献   

14.
CuIn(SxSe1−x)2 thin polycrystalline films were grown by the chemical spray pyrolysis method on the glass substrate at 280-400°C. The alloy composition in the film was studied with relation to that in the splay solution. Films were characterized by X-ray diffraction, optical absorption, Raman spectroscopy, resistivity and surface morphology. The CuInSe2-rich alloy films grown at high substrate temperature had chalcopyrite structure, while, the CuInS2-rich films grown at low substrate temperature exhibited sphalerite structure. Optical-gap energies were smaller than that of the bulk crystal by 0.1-0.2 eV for CuInS2-rich films. Raman spectra exhibited both CuInSe2-like and CuInS2-like A1 modes, and their relative changed systematically with alloy composition.  相似文献   

15.
Thin films of molybdenum trioxide (MoO3) were deposited on common glass using the chemical spray pyrolysis technique. A (NH4)6Mo7O244H20 solution 0.1 M was used as the precursor one. The influence of substrate temperature on the crystallographic structure, surface morphology and electrical behavior of MoO3 thin films was studied. MoO3 can exist in two crystalline forms, the thermodynamically stable orthorhombic α-MoO3 and the metastable monoclinic β-MoO3 phase. XRD-spectra showed a growth of α-MoO3 phase percentage as substrate temperature increases from 420 K up to 670 K. Films deposited in the 500–600 K range have a clearly porous surface structure of nanometer order as can be seen in SEM images. Changes up to six magnitude orders were observed in MoO3 thin films electrical resistance when films temperature varied from 100 K up to 500 K. The sensing property of these MoO3 films was also studied. The sensitivity was investigated in the temperature range 160 and 360 K for H2O and CO gases, respectively. Both of them are of reducing nature. In all studied cases sensitivity decreases slowly as film temperature is raised. At room temperature the sensitivity changes from 12 up to 75% depending on substrate temperature. The sensitivity for CO gas was found to be lower than that of H2O.  相似文献   

16.
We synthesized by pulsed laser deposition (Ba,Sr,Y)TiO3 and (Ba,Pb,Y)TiO3 thin films on mechanically polished nickel substrates.The synthesized thin films were analyzed for: crystalline structure by X-ray diffractometry, morphology and surface topography by atomic force microscopy, optical and scanning electron microscopy, and elemental composition by energy dispersive X-ray spectroscopy and electrical properties by electrical measurements.We have shown that film properties were determined by the dopants, target composition, and deposition parameters (oxygen pressure, substrate temperature and incident laser fluence). All films exhibited a semiconducting behavior, as proved by the decrease of electrical resistance with heating temperature.  相似文献   

17.
We report on the effects of substrate, ambient oxygen pressure and deposition time on the crystal structure, and morphology of Sm0.55Nd0.45NiO3 solid solution nanostructured films synthesized by pulsed-laser deposition. In each film the structure was found to be consistent with a perovskite structure with preferential planes growth and reveals a strong orientation along the orthorhombic (2 1 0) plane of the perovskite subcell for the film deposited on NdGaO3 where highly crystalline films were obtained within 15 min deposition time with a low surface roughness of 8.79 nm. Similar structure is observed on Si (1 0 0) substrate only at O2 pressure of 0.4 mbar. The surface morphology of the different samples shows a net dense film structure with several droplets population. The nano-scaled droplets are in general spherical in shape; a detailed analysis indicates that the laser ablation of this nickelate family is governed to a certain extent by a heat transfer phenomenon.  相似文献   

18.
The deposition of gadolinia-doped ceria (CGO, Gd0.1Ce0.9O1.95) and LaGaO3-based perovskite oxides (LSGM, La0.9Sr0.1Ga0.8Mg0.2O2.87) thin films on a stainless steel substrate was studied using the electrostatic spray deposition (EDS) technique. The effect of process conditions, such as deposition temperature, deposition time and liquid flow rate, on the surface morphology and microstructure of thin films was examined with scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). The deposited CGO films with a highly porous and three-dimensional interconnected structure were obtained at a liquid flow rate of 0.5 ml/h, a deposition temperature of 503 K and a deposition time ranging from 0.5 to 1 h. On the other hand, the deposited LSGM thin films with porous microstructure were also obtained at the deposition time of 1 h, the deposition temperature of 533 K and the liquid flow rate of 0.5 ml/h. The deposited CGO and LSGM thin films were amorphous at the used deposition temperature. Subsequently, the samples were annealed at 1173 K for 2 h and the desired crystal structures were obtained. The chemical analysis of the thin films was investigated by energy dispersive X-ray (EDX) analysis. The observed chemical compositions of the samples were in a fair agreement with those of the starting solutions.  相似文献   

19.
Cold spray was employed as a novel low temperature approach to deposit titanium dioxide (TiO2) photocatalytic film. The film microstructure was characterized using X-ray diffraction and scanning electron microscopy. The photocatalytic performance was examined through acetaldehyde degradation under ultraviolet illumination. Results showed that TiO2 film was successfully deposited on substrate surface through cold spray. The film thickness reached up to 15 μm. The film presented a rough surface and porous structure. Owing to the low temperature of spray powder, no phase and particle size changes occurred to TiO2 during deposition. It was found that the cold-sprayed TiO2 film was active for photodegradation of acetaldehyde.  相似文献   

20.
Nanostructured CuO films have been grown on to the glass substrate by varying the deposition time from 10 to 30 min and substrate temperature from 300 to 400 °C by a simple ultrasonic spray pyrolysis technique, using aqueous a cupric nitrate solution as precursor. The effect of the substrate temperature on the textural, structural, electrical, and gas sensing properties of CuO films was studied and correlated. Thermal analysis of the dried precursor shows the elimination of physisorbed and chemisorbed water. It suggests the formation of CuO phase on substrate at temperature of 300 °C. X-ray diffractograms of the films indicate the formation of polycrystalline monoclinic CuO having monoclinic with crystallite size around 18 nm. The texture coefficient finds the (0 0 2) plane as the preferred orientation in films. The microstrain and dislocation densities have been calculated and found to decreases with increase in substrate temperature. The scanning electron micrographs indicate the formation of trapezium like facet structures on the film surface. AFM analysis shows uniform deposition of the CuO film over the entire substrate surface. Observations reveal that the film deposited at 300 °C show comparatively higher activation energy and appreciable response to ammonia at room temperature. The use of aqueous cupric nitrate as precursor results in the deposition of single phase copper oxide films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号