首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Electron energy levels in single dots, and energy splitting and tunneling times in stacked quantum dots are calculated as functions of structure parameters. An effective mass approach is used to solve the Schrödinger equation for cylindrical dots with finite confinement potentials. Strong confinement due to small sizes produces quantized energy levels in single dots and strong interactions of the wavefunctions with adjacent dots. This electronic coupling induces significant energy splittings and short tunneling times for characteristic structures used in experiments. This coupling may even yield coherent artificial molecular states with different optical properties.  相似文献   

2.
We consider the Maxwell equations for an electromagnetic field propagating in a solid with a three-dimensional superlattice of quantum dots linked by strong tunneling along one axis, where electrons with different spin projections are affected by the strong Coulomb repulsion at a single site. We obtain a phenomenological equation in the form of the classical 1+1-dimensional sine-Gordon equation. Electrons are considered within the framework of quantum formalism taking into account the changes in the dispersion law provided by the presence of Coulomb interactions. The phenomenological equation is solved numerically, and the influence of Coulomb repulsion and the degree of band population on the propagation of ultra-short optical pulses is analyzed.  相似文献   

3.
Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur-Buttiker like current formula are shown in terms of internal states of quantum dots. The effect of inter-dot tunnelling on transport properties has been explored. Results, in intermediate inter-dot coupling regime show signatures of merger of two dots to form a single composite dot and in strong coupling regime the behaviour of the system resembles the two decoupled dots.   相似文献   

4.
We study the capacitance spectra of artificial molecules consisting of two and three coupled quantum dots from an extended Hubbard Hamiltonian model that takes into account quantum confinement, intra- and inter-dot Coulomb interaction and tunneling coupling between all single particle states in nearest neighbor dots. We find that, for weak coupling, the interdot Coulomb interaction dominates the formation of a collective molecular state. We also calculate the effects of correlations on the tunneling probability through the evaluation of the spectral weights, and corroborate the importance of selection rules for understanding experimental conductance spectra.  相似文献   

5.
Quantum dots comprise a type of quantum impurity system. The entanglement and coherence of quantum states are significantly influenced by the strong electron-electron interactions among impurities and their dissipative coupling with the surrounding environment. Competition between many-body effects and transfer couplings plays an important role in determining the entanglement among localized impurity spins. In this work, we employ the hierarchical-equations-of-motion approach to explore the entanglement of a strongly correlated double quantum dots system. The relation between the total system entropy and those of subsystems is also investigated.  相似文献   

6.
Artificial molecules, namely laterally coupled quantum dots with a three-dimensional spherical confinement potential well of radius R and depth V 0, were studied by the unrestricted Hartree-Fock-Roothaan (UHFR) method. By varying the distance d between the centers of the two coupled quantum dots, the transition from the strong coupling situation to the weak one is realized. Hund's rule, suitable for a single quantum dot is destroyed in certain conditions in the artificial molecule. For example, in the few-electron system of the strongly coupled quantum-dot molecule, a transformation of spin configuration has been found. Received 8 March 2002 / Received in final form 29 May 2002 Published online 17 September 2002  相似文献   

7.
The distribution dependency of quantum dots was theoretically and experimentally investigated with respect to the basic properties optical excitation transfer via optical near-field interactions between quantum dots. The effects of three-dimensional structure and arraying precision of quantum dots on the signal transfer performance were analyzed. In addition, the quantum dot distribution dependency of the signal transfer performance was experimentally evaluated by using stacked CdSe quantum dots and an optical near-field fiber probe tip laminated with quantum dots serving as an output terminal, showing good agreement with theory. These results demonstrate the basic properties of signal transfer via optical near-field interactions and serve as guidelines for a nanostructure design optimized to attain the desired signal transfer performances.  相似文献   

8.
We propose a novel method of coupling heterogeneous quantum dots at fixed distances and capsulating the coupled quantum dots by utilizing nanometric local curing of a photo-curable polymer caused by multistep electronic transitions based on a phonon-assisted optical near-field process between quantum dots. Because the coupling and the capsulating processes are triggered only when heterogeneous quantum dots floating in a solution closely approach each other to induce optical near-field interactions between them, the distances between the coupled quantum dots are physically guaranteed to be equal to the scale of the optical near fields. To experimentally verify our idea, we fabricated coupled quantum dots, consisting of CdSe and ZnO quantum dots and a UV-curable polymer. We also measured the photoluminescence properties due to the quantum-dot coupling and showed that the individual photoluminescences from the CdSe and ZnO quantum dots exhibited a trade-off relationship.  相似文献   

9.
田惠忱  肖景林 《发光学报》2008,29(2):243-247
采用线性组合算符和幺正变换方法研究磁场对非对称量子点中弱耦合束缚磁极化子性质的影响。导出量子点中弱耦合束缚磁极化子振动频率和基态能量随量子点的横向和纵向有效受限长度、库仑束缚势、磁场的回旋共振频率和电子-声子耦合强度的变化关系。数值计算结果表明:非对称量子点中弱耦合束缚磁极化子的振动频率和基态能量随量子点的横向和纵向有效受限长度的减小而迅速增大。振动频率随库仑束缚势和磁场的回旋共振频率的增加而增大。基态能量随库仑束缚势和电子-声子耦合强度的增加而减小。  相似文献   

10.
Exciton relaxation in self-assembled semiconductor quantum dots   总被引:1,自引:0,他引:1  
The present study focuses on the effect of excited states on the exciton–polaron spectrum for self-assembled InAs/GaAs semiconductor quantum dots. The analytical model takes into account the Coulomb interactions between the electron and the hole as well as, each carrier, the coupling with the longitudinal optical phonon field. Furthermore, the key role played by the exciton continuum in the dot spectrum is also introduced. Such an approach is well fitted to analyze recent experimental findings about single-dot spectroscopy and allows peaks assignment, line width estimation, relaxation time evaluation, etc., necessary steps toward an understanding of the internal dynamics of quantum dots.  相似文献   

11.
We report on a photoreflectance investigation in the 0.8-1.5 eV photon energy range and at temperatures from 80 to 300 K on stacked layers of InAs/GaAs self-assembled quantum dots (QDs) grown by Atomic-Layer Molecular Beam Epitaxy. We observed clear and well-resolved structures, which we attribute to the optical response of different QD families. The dependence of the ground state transition energy on the number of stacked QD layers is investigated and discussed considering vertical coupling between dots of the same column. It is shown that Coulomb interaction can account for the observed optical response of QD families with different morphology coexisting in the same sample. Received 17 November 1999  相似文献   

12.
The nonlinear response of single GaAs quantum dots is studied in femtosecond near-field pump-probe experiments. At negative time delays, transient reflectivity spectra show pronounced oscillatory structure around the quantum dot exciton line, providing the first evidence for a perturbed free induction decay of the excitonic polarization. Phase-disturbing Coulomb interactions between the excitonic polarization and continuum excitations dominate the optical nonlinearity on ultrafast time scales. A theoretical analysis based on the semiconductor Bloch equations accounts for this behavior.  相似文献   

13.
We consider the transport and the noise characteristic in the case of a triple quantum dots T-shape system where two of the dots form a two-level system and the other works in a detector-like setup. Our theoretical results are obtained using the equation of motion method for the case of zero and finite on-site Coulomb interaction in the detector dot. We present analytic results for the electronic Green’s functions in the system’s component quantum dots, and we used numerical calculations to evaluate the system’s transport properties. The transport trough the T-shaped system can be controlled by varying the coupling between the two-level system dots or the coupling between the detector dot and the exterior electrodes. The system’s conductance presents Fano dips for both strong (fast detector) and weak coupling (slow detector) between the detector dot and the external electrodes. Due to stronger electronic correlations the noise characteristics in the case of a slow detector are much higher. This setup may be of interest for the practical realization of qubit states in quantum dots systems.  相似文献   

14.
We analyzed localized charge time evolution in the system of two interacting quantum dots (QD) (artificial molecule) coupled with the continuous spectrum states. We demonstrated that Coulomb interaction modifies relaxation rates and is responsible for non-monotonic time evolution of the localized charge. We suggested new mechanism of this non-monotonic charge time evolution connected with charge redistribution between different relaxation channels in each QD.  相似文献   

15.
We study the magnetic coupling in artificial molecules composed of two and four laterally coupled quantum dots. The electronic ground-state configurations of such systems are determined by applying current spin density functional theory which allows to include effects of magnetic fields. While the ground-state of a two-dot molecule with strong enough inter-dot coupling tends to be antiferromagnetic with respect to the spins of the single dot components, we find that a square lattice of four dots has a ferromagnetic ground state. Received 17 February 1999 and Received in final form 1 June 1999  相似文献   

16.
A system consisting of two independently contacted quantum dots with a strong electrostatic interaction shows an interdot Coulomb blockade when the dots are weakly tunnel coupled to their leads. How the blockade can be overcome by correlated tunneling when tunnel coupling to the leads increases is studied experimentally. The experimental results are compared with numerical renormalization group calculations using predefined (measured) parameters. Combining our experimental and theoretical results we identify transport through Kondo correlations due to the electrostatic interaction between the two dots.  相似文献   

17.
《Physics Reports》2001,343(6):463-538
This is a review of the phase coherent transmission through interacting mesoscopic conductors. As a paradigm we study the transmission amplitude and the dephasing rate for electron transport through a quantum dot in the Coulomb blockade regime. We summarize experimental and theoretical work devoted to the phase of the transmission amplitude. It is shown that the evolution of the transmission phase may be dominated by non-universal features in the short-time dynamics of the quantum dot. The controlled dephasing in Coulomb-coupled conductors is investigated. Examples comprise a single or multiple quantum dots in close vicinity to a quantum point contact. The current through the quantum point contact “measures” the state of the dots and causes dephasing. The dephasing rate is derived using widely different theoretical approaches. The Coulomb coupling between mesoscopic conductors may prove useful for future work on electron coherence and quantum computing.  相似文献   

18.
A multilevel Anderson model is employed to simulate the system of a nanostructure tunnel junction with any number of one-particle energy levels. The tunneling current, including both shell-tunneling and shell-filling cases, is theoretically investigated via the nonequilibrium Green's function method. We obtain a closed form for the spectral function, which is used to analyze the complicated tunneling current spectra of a quantum dot or molecule embedded in a double-barrier junction. We also show that negative differential conductance can be observed in a quantum dot tunnel junction when the Coulomb interactions with neighboring quantum dots are taken into account.  相似文献   

19.
We study magnetism in magnetically doped quantum dots as a function of the confining potential, particle numbers, temperature, and strength of the Coulomb interactions. We explore the possibility of tailoring magnetism by controlling the nonparabolicity of the confinement potential and the electron-electron Coulomb interaction, without changing the number of particles. The interplay of strong Coulomb interactions and quantum confinement leads to enhanced inhomogeneous magnetization which persists at higher temperatures than in the noninteracting case. The temperature of the onset of magnetization can be controlled by changing the number of particles as well as by modifying the quantum confinement and the strength of the Coulomb interactions. We predict a series of electronic spin transitions which arise from the competition between the many-body gap and magnetic thermal fluctuations.  相似文献   

20.
We study the spin-polarized current through a vertical double quantum dot scheme. Both the Rashba spin–orbit (RSO) interaction inside one of the quantum dots and the strong intradot Coulomb interactions on the two dots are taken into account by using the second-quantized form of the Hamiltonian. Due to the existence of the RSO interaction, spin-up and spin-down electrons couple to the external leads with different strengths, and then a spin polarized current can be driven out of the middle lead by controlling a set of structure parameters and the external bias voltage. Moreover, by properly adjusting the dot levels and the external bias voltages, a pure spin current with no accompanying charge current can be generated in the weak coupling regime. We show that the difference between the intradot Coulomb interactions strongly influences the spin-polarized currents flowing through the middle lead and is undesirable in the generation of the net spin current. Based on the RSO interaction, the structure we propose can efficiently polarize the electron spin without the usage of any magnetic field or ferromagnetic material. This device can be used as a spin-battery and is realizable using the present available technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号