首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
Mechanistic studies on the photoisomerization of 2-alkyl-indazoles into 1-alkyl-benzimidazoles. II. Primary photochemical processes and photophysical deactivation. In the previous paper [1] the structure of the intermediate in the photochemical indazole-benzimidazole-isomerization was discussed ( 3 in Scheme 1). In this communication experiments concerning the photochemical primary processes and photophysical deactivation of 2-alkyl-indazoles ( 1 ) are described. The quantum yield of the rearrangement 1 → 2 (ΦR) decreases with decreasing temperature while the fluorescence quantum yield (ΦF) increases and finally reaches a constant value ( ≠ 1) (Fig.10). This behaviour is inconsistent with the mechanism shown in Scheme 2. Photoreaction and fluorescence are both quenched, but not to the same extent, by freon 113 (Fig. 2). In addition the Stern-Volmer-plots are not linear. These observations are best explained by assuming the existence of two excited states in equilibrium (Scheme 3). The mechanism in Scheme 3 correctly explains the quenching experiments and the temperature dependence of ΦR and ΦF if the Arrhenius law holds for the two rate constants ksx and kR. However, for a quantitative calculation of ΦR, an additional branching of the reaction pathway must be postulated (Scheme 4). Two-dimensional drawings of hypothetical potential energy surfaces of the ground state and the first excited singlet state yielding a qualitative picture of the reaction and deactivation pathways of the discussed molecule are given in Fig. 15 a and b.  相似文献   

2.
A comprehensive characterization of the electronic spectral and photophysical properties of the leuco (reduced) form of several indigo derivatives, including indigo and Tyrian Purple, with di‐, tetra‐, and hexa‐substitution, was obtained in solution. The characterization involves absorption, fluorescence, and triplet–triplet absorption spectra, together with quantitative measurements of quantum yields of fluorescence, ?F (0.46–0.04), intersystem crossing, ?T (0.013–0.034), internal conversion, ?IC, and the corresponding lifetimes. The position and degree of substitution promote differences in the spectral and photophysical properties displayed by the investigated leuco derivatives. The ?F values are about two orders of magnitude higher than those previously obtained for the corresponding keto forms. Also in contrast with the behavior found for the keto forms, the S1~~→T1 intersystem crossing is an efficient route for the excited‐state deactivation channel. These findings strengthen the fact that, in contrast to keto indigo where the internal conversion dominates the deactivation of the excited‐state, with leuco indigo (and derivatives), the excited state deactivation involves competition between internal conversion, triplet state formation, and fluorescence. A time‐resolved investigation of one of the compounds in glycerol showed the presence of a photoisomerization process.  相似文献   

3.
Abstract— Steady state and time resolved fluorescence emission properties of symmetrical dialkoxy-anthracenes (especially substituted on the side rings) 1-X, Y were studied in methylcylohexane. At room temperature, the fluorescence spectra of 1-X, Y show bands in the region of 380–550 nm and quantum yields (φF) in the range of 0.2–1. The fluorescence emission decays were found to be single exponential. The determination of the intersystem crossing quantum yields (φisc) for the weakly fluorescent compounds (1–1,5, 1–1,8 and 1–2,3) demonstrates that internal conversion is negligible compared with fluorescence emission and intersystem crossing, as previously observed for other anthracene derivatives. The fluorescence emission efficiency of compounds 1-X,Y is controlled by the relative mutual positions of the second triplet T2 (whose energy varies significantly with substitution) and the first excited singlet S1 states, respectively. An unusual solvatochromism was found for compound 1–1,4 which has a very weak permanent dipole moment in the ground state. This behavior was assigned to strong changes in the electronic densities between the excited singlet state and the ground state.  相似文献   

4.
The non-radiative processes of deactivation from the lowest singlet excited state of aminoanthraquinones have been studied using steady-state and time-resolved methods. The fluorescence decay rate constant, kf correlates well with the solvent polarity parameter, ET(30), in nonhydrogen bonding solvents. Large deuterium isotope effects in fluorescence lifetimes (τf) and quantum yields (ϕf) are observed in the case of 1-amino (AAQ) and 1-methylaminoanthraquinones (MAQ), where the S1 state is mainly deactivated through internal conversion to the ground state. The temperature-dependence of the fluorescence quantum yields of various aminoanthraquinones was also investigated. The ϕf and τf exhibited strong temperature-dependence in the case of 1-acetylaminoanthraquinone (ACAQ). In the case of ACAQ, the intersystem crossing to the triplet state is a major deactivation channel from the S1 and in this derivative a close-lying T2 state seems to be responsible for the high kisc rate. The fluorescence properties of 1,5-diaminoanthraquinone (DAQ) are affected by intermolecular hydrogen bonding with alcohols. Increasingn-alkyl chain length in the case of l-(n-alkyl)aminoanthraquinones from methyl to butyl does not produce any change in the fluorescence properties, whereas a hydroxypropyl substitution results in a small decrease of ϕf and τf in these compounds, indicating an interaction of the hydroxyl group with the carbonyl group of the aminoanthraquinones.  相似文献   

5.
The fluorescence and phosphorescence quantum yields (ΦΓ and ΦΠ) and observed triplet decay time (τP) of phenyl isocyanate and its chloro derivative, parachlorophenyl isocyanate have been measured in the polar solvent ethanol. Kinetic parameters for the energy depletion process have been generated KP the triplet-singlet transition probability is much more sensitive to Cl substitution than KISC the intersystem crossing rate.  相似文献   

6.
Nanosecond laser flash photolysis employing transient detection of emission and absorption in combination with pulse radiolysis and quantum theory has been employed to shed light into the kinetics, quantum yields, and mechanisms of the deactivation of the first excited singlet state of 1- and 2-thionaphthols (NpSH(S(1))). In contrast to thiophenols (ArSH(S(1))), the results revealed that the decay of the first excited singlet state of 1- and 2-thionaphthols (NpSH(S(1))) is governed by radiationless internal conversion (Φ(IC) = 0.29-0.46; 0.016-0.190) and intersystem crossing (Φ(ISC) = 0.14-0.15; 0.4-0.6), respectively, with pronounced S-H photodissociation (Φ(D) = 0.40-0.55; 0.35-0.40). Fluorescence as a deactivation channel plays a minor role (Φ(F) = 0.001-0.010; 0.010-0.034). Quantum chemical calculations helped in understanding the formation of naphthylthiyl radicals and rationalizing the differences in the efficiency of intersystem crossing of the 1- and 2-thionaphthol systems.  相似文献   

7.
We report a low‐temperature fluorescence spectroscopy study of the PAS‐GAF‐PHY sensory module of Cph1 phytochrome, its Y263F mutant (both with known 3D structures) as well as Y263H and Y263S to connect their photochemical parameters with intramolecular interactions. None of the holoproteins showed photochemical activity at low temperature, and the activation barriers for the Pr→lumi‐R photoreaction (2.5–3.1 kJ mol?1) and fluorescence quantum yields (0.29–0.42) were similar. The effect of the mutations on Pr→Pfr photoconversion efficiency (ΦPr→Pfr) was observed primarily at the prelumi‐R S0 bifurcation point corresponding to the conical intersection of the energy surfaces at which the molecule relaxes to form lumi‐R or Pr, lowering ΦPr→Pfr from 0.13 in the wild type to 0.05–0.07 in the mutants. We suggest that the Ea activation barrier in the Pr* S1 excited state might correspond to the D‐ring (C19) carbonyl – H290 hydrogen bond or possibly to the hindrance caused by the C131/C171 methyl groups of the C and D rings. The critical role of the tyrosine hydroxyl group can be at the prelumi‐R bifurcation point to optimize the yield of the photoprocess and energy storage in the form of lumi‐R for subsequent rearrangement processes culminating in Pfr formation.  相似文献   

8.
The fluorescence quantum yield (Φf), fluorescence lifetime (τf), intersystem crossing quantum yield (Φisc) and redox potentials of seven halogenated fluoresceins in their dianion forms were measured and compared in methanol to get a deep insight into the effect of halogeno atoms on their photophysics. It is found that the heavy atom effect alone cannot explain the experimental results, as (1) Φf for chlorinated dyes exceeds that of fluorescein and close to unity, (2) the sum of Φf and Φisc for brominated and iodinated xanthene dyes is remarkably less than unity. The observations can be rationalized by the involvement of intramolecular photoinduced electron transfer, in which the benzoate acts as the electron donor while the xanthene moiety is the acceptor. The more negative reduction potential of excited singlet state for chlorinated fluoresceins results in their much smaller ket, and hence higher Φf.  相似文献   

9.
The synthesis, photophysical and photochemical properties of the tetra- and octa-[4-(benzyloxyphenoxy)] substituted gallium(III) and indium(III) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H NMR spectroscopy and electronic spectroscopy. General trends are described for quantum yields of photodegredation, fluorescence quantum yields and lifetimes, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulfoxide (DMSO). Substituted indium phthalocyanine complexes (7b9b) showed much higher quantum yields of triplet state and shorter triplet lifetimes, compared to the substituted GaPc derivatives due to enhanced intersystem crossing (ISC) in the former. The gallium and indium phthalocyanine complexes showed phototransformation during laser irradiation due to ring reduction. The singlet oxygen quantum yields (ΦΔ), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.51 to 0.94. Thus, these complexes show potential as photodynamic therapy of cancer.  相似文献   

10.
Dependences of the fluorescence and triplet state quantum yields of kynurenic acid (1) and kynurenine yellow (2) in water—glycerol mixtures on medium viscosity have been studied. The main channel of the singlet excited state decay of compound 1 is the intersystem crossing, which rate weakly depends on the viscosity; only a small (approximately 1.5-fold) increase in the fluorescence yield was found for this compound with the increase of the solution viscosity from 0.84 cP (aqueous solution) to 78 cP (86% glycerol). The deactivation of the S1 state of compound 2 is caused mainly by the internal conversion, and a noticeable increase of the fluorescence yield (approximately 3-fold), as well as the change in the photolysis product yields, was observed with the increasing percentage of glycerol in the mixture. The triplet state quantum yields for compounds 1 and 2 remained unchanged with the variation of the glycerol content in the mixture.  相似文献   

11.
Solvent deuteration effects on internal conversion (S1 ~→ S0) and intersystem crossing (S1 ~→ T1) in 6-hydroxy-9-phenylfluoron and fluorescein were determined from fluorescence and triplet quantum yield measurements in alkaline solutions of H2O, D2O, CH3OH, CH3OD, C2H5OH, and C2D5OD. Deuterium substitution of the oxygen-bonded hydrogens of these solvenis reduces both the internal conversion (by approximately 1.6) and the intersystem crossing (by approximately 1.2) rate constants; the additional deuteration of the alkyl groups of the alcohols does not produce any further effect. The effect of solvent deuteration was negligible for fluorescein. Deuteration of the xanthene groups of the dyes does not influence the radiationless transition probabilities to any significant extent.  相似文献   

12.
Diazo-dibenzoylmethane I undergoes two primary photochemical processes leading to α-phenyl-α-benzoyl-methane II and dibenzoylmethane III. The formation of II is related to the lowest excited singlet state of I and the formation of III is related to the lowest excited triplet state of I. The quantum yields of both processes (ΦII, ΦIII) are strongly wavelength dependent. It is unambiguously demonstrated, that the population of the two excited states depends on the energy of the exciting light, thus causing a wavelength effect. There is shown to be an activation barrier controlling the rate of intersystem crossing from the S1 to the T1 level of I.  相似文献   

13.
We have investigated the effect of a series of 18 solvents and mixtures of solvents on the production of singlet molecular oxygen (O2(1Δg), denoted as 1O2) by 9H‐fluoren‐9‐one (FLU). The normalized empirical parameter E derived from ET(30) has been chosen as a measure of solvent polarity using Reichardt's betaine dyes. Quantum yields of 1O2 production (ΦΔ) decrease with increasing solvent polarity and protic character as a consequence of the decrease of the quantum yield of intersystem crossing (ΦISC). Values of ΦΔ of unity have been found in alkanes. In nonprotic solvents of increasing polarity, ΦISC and, therefore, ΦΔ decrease due to solvent‐induced changes in the energy levels of singlet and triplet excited states of FLU. This compound is a poor 1O2 sensitizer in protic solvents, because hydrogen bonding considerably increases the rate of internal conversion from the singlet excited state, thus diminishing ΦΔ to values much lower than those in nonprotic solvents of similar polarity. In mixtures of cyclohexane and alcohols, preferential solvation of FLU by the protic solvent leads to a fast decrease of ΦΔ upon addition of increasing amounts of the latter.  相似文献   

14.
The photophysical and spectroscopic properties of a new class of oligothiophene derivatives, designated as cruciform oligomers, have been investigated in solution (room and low temperature) and in the solid state (as thin films in Zeonex matrixes). The study comprises absorption, emission, and triplet-triplet absorption spectra, together with quantitative measurements of quantum yields (fluorescence, intersystem crossing, internal conversion, and singlet oxygen formation) and lifetimes. The overall data allow the determination of the rate constants for all decay processes. From these, several conclusions are drawn. First, in solution, the main deactivation channels for the compounds are the radiationless processes: S(1) --> S(0) internal conversion and S(1) --> T(1) intersystem crossing. Second, in general, in the solid state, the fluorescence quantum yields decrease relative to solution. A comparison is made with the analogous linear alpha-oligothiophenes, revealing a lower fluorescence quantum efficiency and, in contrast to the normal oligothiophenes, that internal conversion is an important channel for the deactivation of the singlet excited state. Replacement of thiophene by 1,4-phenylene units in the longer-sized cruciform oligomer increases the fluorescence efficiency. The highly efficient generation of singlet oxygen through energy transfer from the triplet state (S(Delta) approximately 1) provides support for the measured intersystem crossing quantum yields and suggests that reaction with this may be an important pathway to consider for degradation of devices produced with these compounds.  相似文献   

15.
The phosphorescence emission of perylene bisimide derivatives has been rarely reported. Two novel ruthenium(II) and iridium(III) complexes of an azabenz‐annulated perylene bisimide (ab‐PBI), [Ru(bpy)2(ab‐PBI)][PF6]2 1 and [Cp*Ir(ab‐PBI)Cl]PF6 2 are now presented that both show NIR phosphorescence between 750–1000 nm in solution at room temperature. For an NIR emitter, the ruthenium complex 1 displays an unusually high quantum yield (Φp) of 11 % with a lifetime (τp) of 4.2 μs, while iridium complex 2 exhibits Φp<1 % and τp=33 μs. 1 and 2 are the first PBI‐metal complexes in which the spin–orbit coupling is strong enough to facilitate not only the Sn→Tn intersystem crossing of the PBI dye, but also the radiative T1→S0 transition, that is, phosphorescence.  相似文献   

16.
Recent efforts in designing new 3H-naphthopyran derivatives have been focused on efficient coloration process with a short fading time of the colored transoid-cis TC isomer. It is desirable to avoid photoisomerization of TC leading to transoid-trans TT isomers in the photoreaction. Long lifetime of TT can hamper fast applications such as dynamic holographic materials and molecular actuators, the residual color is one of the serious issues for photochromic lenses. Herein we characterize the photophysical and photochemical channels of TC excited state deactivation competing with the unwanted TC → TT isomerization process. Transient absorption spectroscopy reveals a very short lifetime of the singlet excited TC (≈0.8 ps) and its deactivation channels as S1→S0 internal conversion (major), intersystem crossing S1→T1, pyran ring formation, photoenolization and TC → TT isomerization. Computations support the S1→S0 and T1→S0 channels as responsible for photostabilization of the TC form.  相似文献   

17.
Values of triplet yields for dilute solutions of benzene in methylcylohexane, cyclohexane, methanol, ethanol, acetonitrile, perfluoro-n- hexane, and water, and also fluorescence yields and lifetimes in perfluoro-n-hexane are reported. The calculated rate constants for fluorescence and intersystem crossing are only slightly affected by solvent, except for water. The enhancement of “internal conversion” by increasing solvent polarity is interpreted as a result of an increase in the pre-exponential factor for a possible 1(π,π*) → 1(σ,π*) transition.  相似文献   

18.
We designed, synthesized, and evaluated environmentally responsive solvatochromic fluorescent dyes by incorporating weak push–pull moieties. The quantum yields of the push (alkyl)–pull (formyl) pyrene dyes were dramatically enhanced by the introduction of alkyl groups into formylpyrene (1‐formylpyrene: ΦF=0.10; 3,6,8‐tri‐n‐butyl‐1‐formylpyrene: ΦF=0.90; in MeOH). The new dyes exhibited unique sensitivity to solvent polarity and hydrogen‐bond donor ability, and specific fluorescence turn‐on/off properties (e.g., 3,6,8‐tri‐n‐butyl‐1‐formylpyrene: ΦF=0.004, 0.80, 0.37, and 0.90 in hexane, chloroform, DMSO, and MeOH, respectively). Here, the alkyl groups act as weak donors to suppress intersystem crossing by destabilizing the HOMOs of 1‐formylpyrene while maintaining weak intramolecular charge‐transfer properties. By using alkyl groups as weak donors, environmentally responsive, and in particular, pH‐responsive fluorescent materials may be developed in the future.  相似文献   

19.
A series of fluorescent “push‐pull” tetrathia[9]helicenes based on quinoxaline (acceptor) fused with tetrathia[9]helicene (donor) derivatives was synthesized for control of the excited‐state dynamics and circularly polarized luminescence (CPL) properties. In this work, introduction of a quinoxaline onto the tetrathia[9]helicene skeleton induced the “push–pull” character, which was enhanced by further introduction of an electron‐releasing Me2N group or an electron‐withdrawing NC group onto the quinoxaline unit (denoted as Me2N‐QTTH and NC‐QTTH, respectively). These trends were successfully discussed in terms of by electrochemical measurements and density functional theory (DFT) calculations. As a consequence, significant enhancements in the fluorescence quantum yields (ΦFL) were achieved. In particular, the maximum ΦFL of Me2N‐QTTH was 0.43 in benzene (NC‐QTTH: ΦFL=0.30), which is more than 20 times larger than that of a pristine tetrathia[9]helicene (denoted as TTH; ΦFL=0.02). These enhancements were also explained by kinetic discussion of the excited‐state dynamics such as fluorescence and intersystem crossing (ISC) pathways. Such significant enhancements of the ΦFL values thus enabled us to show the excellent CPL properties. The value of anisotropy factor gCPL (normalized difference in emission of right‐handed and left‐handed circularly polarized light) was estimated to be 3.0×10?3 for NC‐QTTH.  相似文献   

20.
Visible and ultraviolet fluorescence of I2, following excitation by ArF/193nm excimer laser pulses, was recorded for different pressures of argon buffer gas in a flow system. Dispersed fluorescence spectra due to the transitionsD’(2g) → A’(2y andD(0 n + )→X0 g + ) were analysed by inversion and spectral simulations. Thus vibrational distributions in the emitting states were obtained as a function of pressure to determine the mechanism of relaxation to populate the lowest quantum levels of theD’ state, which are the emitting states in the iodine laser. Fast intersystem crossing is found to occur from initially populated vibrational levels of theD state to other ion-pair states correlating with the ground state ions, followed by rapid relaxation, involving both direct vibrational relaxation within individual states and intersystem crossing between states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号