首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed investigations by time‐resolved transient absorption and fluorescence spectroscopies with nano‐ and femtosecond time resolutions are carried out with the aim of characterising the lowest excited singlet and triplet states of three ethynyl fluorenes ( 1 – 3 ) and three ethynyl anthracenes ( 4 – 6 ) in solvents of different polarity. The solvent is found to modify the deactivation pathways of the lowest excited singlet state of compounds 1 – 4 , thus changing their fluorescence, intersystem crossing and internal conversion efficiencies. The fluorescence and triplet yields gradually decrease, while the internal conversion quantum yield increases upon increasing the solvent dielectric constant. These experimental results, coupled with the marked fluorosolvatochromic effect, point to the involvement of an emitting state with a charge‐transfer (CT) character, strongly stabilised by polar solvents. This is proved by ultrafast spectroscopic studies in which two transients, distinguished by characteristic spectral shapes assigned to locally excited (LE) and CT states, are detected, the CT state being the longer lived and fluorescent one in highly polar solvents. The intramolecular LE→CT process, operative in highly polar media, becomes particularly fast (up to ≈300 fs) in the case of the NO2 derivative 1 . No push–pull character is found for 5 and 6 , which exhibit different photophysical behaviour; indeed, the solvent polarity does not modify significantly the dynamics of the lowest excited singlet states. Quantum mechanical calculations at the TDDFT level are also used to determine the state order and nature of the lowest excited singlet and triplet states and to rationalise the different photophysical behaviour of fluorine and anthracene derivatives, particularly concerning the intersystem crossing process.  相似文献   

2.
Effects of solvent, pH and hydrogen bonding with N‐methylimidazole (MIm) on the photophysical properties of 1‐hydroxyfluorenone (1HOF) have been studied. Fluorescence lifetime, fluorescence quantum yield and triplet yield measurements demonstrated that intersystem crossing was the dominant process in apolar media and its rate constant significantly diminished with increasing solvent polarity. The acceleration of internal conversion in alcohols paralleled the strength of intermolecular hydrogen bonding. The faster energy dissipation from the singlet‐excited state in cyclohexane was attributed to intramolecular hydrogen bonding. The pKa of 1HOF decreased from 10.06 to 5.0 on light absorption, and H3O+ quenched the singletexcited molecules in a practically diffusion‐controlled reaction. On addition of MIm in toluene, dual fluorescence was observed, which was attributed to reversible formation of excited hydrogen‐bonded ion pair. Rate constants for the various deactivation pathways were derived from the combined analysis of the steady‐state and the time‐resolved fluorescence results.  相似文献   

3.
Spectral and photophysical properties of the indigo derivative Cibalackrot in keto and reduced (leuco) forms were studied by absorption spectra, fluorescence and pulse radiolysis and compared with the structurally similar indigo. With the keto form of this dye, fluorescence (phiF = 0.76) and intersystem crossing (phiT = 0.11) are dominant, whereas with indigo, efficient internal conversion (phiIC = 0.99) is observed, probably involving proton transfer through intramolecular hydrogen bonds. With Cibalackrot, this pathway is blocked, supporting the above model for indigo. With the reduced form of Cibalackrot, more than 98% of the absorbed quanta are dissipated through S1 approximately --> S0 internal conversion, which contrasts with leuco-indigo, where fluorescence (phiF = 0.35), internal conversion (phiIC = 0.53) and intersystem crossing (phiT = 0.125) are found to be competitive. In addition, a synthetic precursor of Cibalackrot (preCiba) was also investigated. This has a rigid molecular structure (with a moiety identical to Cibalackrot and the other to indigo), but intra- or intermolecular proton transfer is allowed between adjacent carbonyl and N-H groups. With this precursor in its keto structure the photophysical parameters are generally very close to those of the keto form of indigo, and different from those of Cibalackrot. A more detailed investigation of the time-decay profiles of preCiba in dioxane (and with added water and D2O) has shown that these follow biexponential laws with a shorter component of 14-25 ps, which appears associated with a risetime at longer wavelength emissions (and to a positive preexponential at shorter emission wavelengths) and a longer lived (decay) component of 104-130 ps. In the steady-state spectra of preCiba, the variation with temperature reveals a blue shift of the emission maxima, which is interpreted as the presence (simultaneous emission) of two species (keto and enol) in the excited state. Indigo and deuterated indigo are also found to present a similar behavior. The overall data are interpreted as to be due to an excited-state process involving the proton transfer between keto and enol forms. Rate constants with values of 7 x 10(10) s-1 for preCiba and 1.6 x 10(11) s-1 for deuterated indigo were obtained. This inverse isotope effect is justified on the basis of the proposed model for proton-transfer excited-state deactivation.  相似文献   

4.
Time‐resolved transient absorption and fluorescence spectroscopy with nano‐ and femtosecond time resolution were used to investigate the deactivation pathways of the excited states of distyrylfuran, thiophene and pyridine derivatives in several organic solvents of different polarity in detail. The rate constant of the main decay processes (fluorescence, singlet–triplet intersystem crossing, isomerisation and internal conversion) are strongly affected by the nature [locally excited (LE) or charge transfer (CT)] and selective position of the lowest excited singlet states. In particular, the heteroaromatic central ring significantly enhances the intramolecular charge‐transfer process, which is operative even in a non‐polar solvent. Both the thiophene and pyridine moieties enhance the S1→T1 rate with respect to the furan one. This is due to the heavy‐atom effect (thiophene compounds) and to the 1(π,π)*→3(n,π)* transition (pyridine compounds), which enhance the spin‐orbit coupling. Moreover, the solvent polarity also plays a significant role in the photophysical properties of these push–pull compounds: in fact, a particularly fast 1LE*→1CT* process was found for dimethylamino derivatives in the most polar solvents (time constant, τ≤400 fs), while it takes place in tens of picoseconds in non‐polar solvents. It was also shown that the CT character of the lowest excited singlet state decreased by replacing the dimethylamino side group with a methoxy one. The latter causes a decrease in the emissive decay and an enhancement of triplet‐state formation. The photoisomerisation mechanism (singlet/triplet) is also discussed.  相似文献   

5.
The photophysical and spectroscopic properties of a new class of oligothiophene derivatives, designated as cruciform oligomers, have been investigated in solution (room and low temperature) and in the solid state (as thin films in Zeonex matrixes). The study comprises absorption, emission, and triplet-triplet absorption spectra, together with quantitative measurements of quantum yields (fluorescence, intersystem crossing, internal conversion, and singlet oxygen formation) and lifetimes. The overall data allow the determination of the rate constants for all decay processes. From these, several conclusions are drawn. First, in solution, the main deactivation channels for the compounds are the radiationless processes: S(1) --> S(0) internal conversion and S(1) --> T(1) intersystem crossing. Second, in general, in the solid state, the fluorescence quantum yields decrease relative to solution. A comparison is made with the analogous linear alpha-oligothiophenes, revealing a lower fluorescence quantum efficiency and, in contrast to the normal oligothiophenes, that internal conversion is an important channel for the deactivation of the singlet excited state. Replacement of thiophene by 1,4-phenylene units in the longer-sized cruciform oligomer increases the fluorescence efficiency. The highly efficient generation of singlet oxygen through energy transfer from the triplet state (S(Delta) approximately 1) provides support for the measured intersystem crossing quantum yields and suggests that reaction with this may be an important pathway to consider for degradation of devices produced with these compounds.  相似文献   

6.
This paper describes the results of a study of the photophysical properties of various methyl-angelicins (MA) in solvents of different polarity and proticity. The behavior of their excited singlet and triplet states was investigated by fluorometry and nanosecond laser flash photolysis. On the basis of semiempirical (ZINDO/S-CI) calculations and the solvent effect on the absorption and fluorescence properties, the lowest excited singlet state (S1) is assigned to a partially allowed π, π* state. The close lying S2 state is n,π* in nature. The efficiency of the decay pathways of S1 (fluorescence, intersystem crossing and internal conversion) strongly depends on the energy gap between the S1 and S2 states consistent with the manifestation of “proximity effect.” Thus, MA in cyclohexane decay only through S1→ S0 internal conversion, while in acetonitrile and ethanol, where the n, π* state is located at higher energy, their fluorescence and intersystem crossing increase significantly. The lowest excited triplet states (T1) were characterized in terms of their absorption spectra, decay kinetics, molar absorption coefficients and formation quantum yields. The interaction of T1 MA with molecular oxygen leads to an efficient formation of singlet oxygen, as evidenced by the appearance of characteristic IR phosphorescence centered at 1269 nm.  相似文献   

7.
The spectral and photophysical properties of indigo derivatives with di-, tetra-, and hexa-substitution in their neutral (keto) form are investigated in solution. The study comprises absorption and emission spectra, together with quantitative measurements of quantum yields of fluorescence (phi(F)) and singlet oxygen formation (phi(Delta)) and fluorescence lifetimes. The energy difference between the HOMO and LUMO orbitals is dependent on the degree (number of groups) and relative position of substitution. The phi(F) and phi(Delta) values were found to be very low S(0) internal conversion yields and thus, with the other data, to determine the rate constants for all decay processes. From these, several conclusions are drawn. Firstly, the radiationless rate constants, k(NR) , clearly dominate over the radiative rate constants, k(F) , (and processes). Secondly, the main deactivation channel for the compounds in their keto form is the radiationless S(1) approximately approximately -->S(0) internal conversion process. Finally, although the changes are relatively small, internal conversion yield seems to be independent of the overall pattern of substitution. A more detailed investigation of the decay profiles with collection at the blue and red emission of the fluorescence band of indigo and one di-substituted indigo reveals the decays to be bi-exponential and that at longer emission wavelengths these appear to be associated with both rise and decay times indicating that two excited species exist, which is consistent with a keto-excited form giving rise (by fast proton transfer) to the enol-form of indigo. Evidence is presented which supports the idea that intramolecular (and possibly some intermolecular) proton transfer can explain the high efficiency of internal conversion in indigo.  相似文献   

8.
The experimental ultrafast photophysics of thioxanthone in several aprotic organic solvents at room temperature is presented, measured using femtosecond transient absorption together with high‐level ab initio CASPT2 calculations of the singlet‐ and triplet‐state manifolds in the gas phase, including computed state minima and conical intersections, transition energies, oscillator strengths, and spin–orbit coupling terms. The initially populated singlet ππ* state is shown to decay through internal conversion and intersystem crossing processes via intermediate nπ* singlet and triplet states, respectively. Two easily accessible conical intersections explain the favorable internal conversion rates and low fluorescence quantum yields in nonpolar media. The presence of a singlet–triplet crossing near the singlet ππ* minimum and the large spin–orbit coupling terms also rationalize the high intersystem crossing rates. A phenomenological kinetic scheme is proposed that accounts for the decrease in internal conversion and intersystem crossing (i.e. the very large experimental crescendo of the fluorescence quantum yield) with the increase of solvent polarity.  相似文献   

9.
《Chemical physics letters》2001,331(3-4):198-205
The spectroscopic and photophysical properties for a series of bis-adduct derivatives of C60 have been studied using a combination of time-resolved and steady state techniques, including picosecond single photon counting and laser flash photolysis. The electronic absorption and fluorescence spectra are red shifted with respect to those of C60. As with the parent fullerene, the main deactivation channel of the excited singlet state is intersystem crossing with the yields of singlet oxygen ranging from 0.63 to 0.97. Our results demonstrate that the photophysical properties depend on the addition pattern of the addends.  相似文献   

10.
Abstract— Steady state and time resolved fluorescence emission properties of symmetrical dialkoxy-anthracenes (especially substituted on the side rings) 1-X, Y were studied in methylcylohexane. At room temperature, the fluorescence spectra of 1-X, Y show bands in the region of 380–550 nm and quantum yields (φF) in the range of 0.2–1. The fluorescence emission decays were found to be single exponential. The determination of the intersystem crossing quantum yields (φisc) for the weakly fluorescent compounds (1–1,5, 1–1,8 and 1–2,3) demonstrates that internal conversion is negligible compared with fluorescence emission and intersystem crossing, as previously observed for other anthracene derivatives. The fluorescence emission efficiency of compounds 1-X,Y is controlled by the relative mutual positions of the second triplet T2 (whose energy varies significantly with substitution) and the first excited singlet S1 states, respectively. An unusual solvatochromism was found for compound 1–1,4 which has a very weak permanent dipole moment in the ground state. This behavior was assigned to strong changes in the electronic densities between the excited singlet state and the ground state.  相似文献   

11.
The photophysical properties of 3,3′-dialkylthiacarbocyanine iodides and chlorides were measured in various solvents. It was found that photoisomerization and fluorescence are the major contributors to the deactivation of the excited singlet state; intersystem crossing occurs with only a very low efficiency. In ethanol, a triplet yield of 0.004 and a singlet oxygen quantum yield of 0.002 were determined. The photophysical parameters of these dyes are not substantially influenced by the length of the alkyl chain or the size of the halide counterion. The substitution of an ethyl with an octadecyl-chain only slightly hinders photoisomerization, and the replacement of the chloride with an iodide reduces only marginally the fluorescence lifetimes and fluorescence quantum yields in chloroform. A significant external heavy-atom effect is observed using dibromoethane as a solvent: triplet and singlet oxygen yields increase7–10-fold, and the triplet lifetime decreases from 55 μs to 15 mUs.  相似文献   

12.
Recent efforts in designing new 3H-naphthopyran derivatives have been focused on efficient coloration process with a short fading time of the colored transoid-cis TC isomer. It is desirable to avoid photoisomerization of TC leading to transoid-trans TT isomers in the photoreaction. Long lifetime of TT can hamper fast applications such as dynamic holographic materials and molecular actuators, the residual color is one of the serious issues for photochromic lenses. Herein we characterize the photophysical and photochemical channels of TC excited state deactivation competing with the unwanted TC → TT isomerization process. Transient absorption spectroscopy reveals a very short lifetime of the singlet excited TC (≈0.8 ps) and its deactivation channels as S1→S0 internal conversion (major), intersystem crossing S1→T1, pyran ring formation, photoenolization and TC → TT isomerization. Computations support the S1→S0 and T1→S0 channels as responsible for photostabilization of the TC form.  相似文献   

13.
Attaching stable radicals to organic chromophores is an effective method to enhance the intersystem crossing (ISC) of the chromophores. Herein we prepared perylene-oxoverdazyl dyads either by directly connecting the two units or using an intervening phenyl spacer. We investigated the effect of the radical on the photophysical properties of perylene and observed strong fluorescence quenching due to radical enhanced ISC (REISC). Compared with a previously reported perylene-fused nitroxide radical compound (triplet lifetime, τT=0.1 μs), these new adducts show a longer-lived triplet excited state (τT=9.5 μs). Based on the singlet oxygen quantum yield (ΦΔ=7 %) and study of the triplet state, we propose that the radical enhanced internal conversion also plays a role in the relaxation of the excited state. Femtosecond fluorescence up-conversion indicates a fast decay of the excited state (<1.0 ps), suggesting a strong spin-spin exchange interaction between the two units. Femtosecond transient absorption (fs-TA) spectra confirmed direct triplet state population (within 0.5 ps). Interestingly, by fs-TA spectra, we observed the interconversion of the two states (D1↔Q1) at ∼80 ps time scale. Time-resolved electron paramagnetic resonance (TREPR) spectral study confirmed the formation of the quartet sate. We observed triplet and quartet states simultaneously with weights of 0.7 and 0.3, respectively. This is attributed to two different conformations of the molecule at excited state. DFT computations showed that the interaction between the radical and the chromophore is ferromagnetic (J>0, 0.05∼0.10 eV).  相似文献   

14.
The decay processes of the lowest excited singlet and triplet states of five methylated angelicins (4,6,4′-trimethyl-angelicin, MA, and four methylated thioangelicins, MTA; see Scheme 1) were investigated in live solvents by stationary and pulsed fluorometric and flash photolytic techniques. In particular, the solvent effects on absorption, fluorescence, quantum yields of fluorescence (φF) and triplet formation (φT), lifetimes of fluorescence (τF) and the triplet state (τT) and the quantum yields of singlet oxygen production (φΔ) were investigated. Semiempirical (ZINDO/S-CI) calculations were carried out to obtain information (transition probabilities and nature) on the lowest excited singlet and triplet states. The quantum mechanical calculations and the solvent effect on the photophysical properties showed that the lowest excited singlet state (S1) is a partially allowed π,π* state, while the close-lying S2 state is n,π* in nature. The efficiencies of fluorescence, S1→T1 intersystem crossing (ISC) and S1→ S0 internal conversion (IC) strongly depend on the energy gap between S1, and S2 and are explained in terms of the so-called proximity effect. In fact, for MA in cyclohexane, only the S1→ S0 internal conversion is operative, while in acetonitrile and ethanol, where the n.π* state is shifted to higher energy, the efficiencies of fluorescence and ISC increase significantly. The energy gap between S1 and S2 increases in MTA, where the furanic oxygen is replaced by a sulfur atom. Consequently, the solvent effect on the photophysical parameters of MTA is less marked than for MA; e.g. fluorescence and triplet-triplet absorption are also detectable in the nonpolar cyclohexane. The lowest excited singlet state of molecular oxygen O2(1Dg) was produced efficiently in polar solvents by energy transfer from the T1 state of MA and MTA.  相似文献   

15.
An unusual temperature effect on the intensity of fluorescence of 9-carbonyl derivatives of anthracene is observed. This is interpreted in terms of an intersystem crossing process from the lowest excited singlet state Sππ* to the higher excited triplet state T*.  相似文献   

16.
The nitrobenzofurazan (NBD) moiety has gained tremendous popularity over the last decades due to its fluorogenic nature. Indeed, upon interaction with aliphatic amines, it generates a stable fluorescent adduct, which has been used for protein and lipid labeling. In fact the 4‐amino substituted NBD belongs to the broad family of intramolecular charge transfer molecules, with the amino group acting as an electron donor upon photoexcitation, and the nitro group as an electron acceptor. Although the singlet excited state of 4‐amino NBD derivatives has been abundantly studied, investigation of its triplet manifold is scarce and even the absence of intersystem crossing for this type of molecules has been suggested. However, intramolecular charge transfer molecules are known to undergo intersystem crossing and high phosphorescence quantum yields have been reported in a nonpolar solvent. In the present paper, we have investigated the photophysical and photochemical properties of N‐hexyl‐7‐nitrobenzo[c][1,2,5]xadiazole‐4‐amine. We have shown the existence of a triplet state for this molecule in cyclohexane via nanosecond laser flash photolysis. Interestingly, deactivation of the triplet state leads to photoproducts formation, which are only present in the absence of oxygen.  相似文献   

17.
Tolyporphins are tetrapyrrole macrocycles produced by a cyanobacterium‐containing culture known as HT‐58‐2. Tolyporphins A–J are free base dioxobacteriochlorins, whereas tolyporphin K is an oxochlorin. Here, the photophysical characterization is reported of tolyporphin A and two synthetic analogues, an oxobacteriochlorin and a dioxobacteriochlorin. The characterization (in toluene, diethyl ether, ethyl acetate, dichloromethane, 1‐pentanol, 2‐butanone, ethanol, methanol, N,N‐dimethylformamide and dimethylsulfoxide) includes static absorption and fluorescence spectra, fluorescence quantum yields and time‐resolved data. The data afford the lifetime of the lowest singlet excited state and the yields of the nonradiative decay pathways (intersystem crossing and internal conversion). The three macrocycles exhibit only modest variation in spectroscopic and excited‐state photophysical parameters across the solvents. The long‐wavelength (Qy) absorption band of tolyporphin A appears at ~680 nm and is remarkably narrow (full‐width‐at‐half‐maximum ~7 nm). The position of the long‐wavelength (Qy) absorption band of tolyporphin A (~680 nm) more closely resembles that of chlorophyll a (662 nm) than bacteriochlorophyll a (772 nm). The absorption spectra of tolyporphins B–I, K (which were available in minute quantities) are also reported in methanol; the spectra of B–I closely resemble that of tolyporphin A. Taken together, tolyporphin A generally exhibits spectral and photophysical features resembling those of chlorophyll a.  相似文献   

18.
The fluorescence from the lowest excited singlet state following excitation of the lowest triplet state was observed for anthracene, 9-methylanthracene, and 9-phenylanthracene in ethanol by a newly devised double excitation method which is essentially the combination of flash and laser photolysis. The quantum yield of intersystem crossing from the excited triplet state, Tn(n ? 2), to the lowest excited singlet state was markedly increased by methyl- and phenyl-substitution at the meso-position.  相似文献   

19.
The mechanism of the light‐induced spin crossover of the [Fe(bpy)3]2+ complex (bpy=2,2′‐bipyridine) has been studied by combining accurate electronic‐structure calculations and time‐dependent approaches to calculate intersystem‐crossing rates. We investigate how the initially excited metal‐to‐ligand charge transfer (MLCT) singlet state deactivates to the final metastable high‐spin state. Although ultrafast X‐ray free‐electron spectroscopy has established that the total timescale of this process is on the order of a few tenths of a picosecond, the details of the mechanisms still remain unclear. We determine all the intermediate electronic states along the pathway from low spin to high spin and give estimates for the deactivation times of the different stages. The calculations result in a total deactivation time on the same order of magnitude as the experimentally determined rate and indicate that the complex can reach the final high‐spin state by means of different deactivation channels. The optically populated excited singlet state rapidly decays to a triplet state with an Fe d6(${{\rm t}{{5\hfill \atop {\rm 2g}\hfill}}}$ ${{\rm e}{{1\hfill \atop {\rm g}\hfill}}}$ ) configuration either directly or by means of a triplet MLCT state. This triplet ligand‐field state could in principle decay directly to the final quintet state, but a much faster channel is provided by internal conversion to a lower‐lying triplet state and subsequent intersystem crossing to the high‐spin state. The deactivation rate to the low‐spin ground state is much smaller, which is in line with the large quantum yield reported for the process.  相似文献   

20.
We have synthesized three new molecules that have three thienylethynyl arms substituting a central benzene core and different electron donor/acceptor groups in the three remaining phenyl positions. The absorption, fluorescence, phosphorescence, and transient triplet–triplet spectra are analyzed in the light of the electronic structure of the ground and excited states obtained from quantum‐chemical calculations. From the above, the relevant photophysical data (including quantum yields, lifetimes, and rate constants) could be derived. It was found that the major deactivation pathway is internal conversion, which competes with the fluorescence and intersystem crossing processes. For the three investigated compounds, we provide convincing theoretical support corroborating these findings and further conclusions based on the theoretical information obtained. These molecules are one of the very few cases in which the depolarization ratios, obtained from the NLO optical measurements, clearly reflect the octopolar configuration. Molecular hyperpolarizabilities have been measured and display a typical dependence on the donor–acceptor substitution pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号