首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Chen Z  Uchiyama K  Hobo T 《Electrophoresis》2001,22(11):2136-2142
18-Crown-6-tetracarboxylic acid (18C6H4) is a chiral selector with high selectivity for the enantioseparation of solutes bearing the primary amine function. This work presents the simultaneous separation of positional enantiomers of methyl-DL-tryptophans by using 18C6H4 as an additive to the background electrolyte. Separation conditions such as pH, the concentration of 18C6H4, and the applied voltages have critical inference on the simultaneous separation. The addition of cyclodextrins as anionic surfactants to the background electrolyte did not improve the separation. The selector-selectand interactions between 18C6H4 and the positional enantiomers have been investigated. It was observed that both the position and type of substituents contribute to the enantioselectivity. The migration order and resolution depended on the distance from the substituents to the asymmetric carbon of the enantiomers.  相似文献   

2.
To clarify the structural scaffold of (+)-18-crown-6 tetracarboxylic acid ((+)-18C6H4) for the optical resolution of a chiral amino acid, the crystal structures of its equimolar complexes with L- and D-isomers of tyrosine (Tyr), isoleucine (Ile), methionine (Met) and phenylglycine (PheG) were analysed by X-ray diffraction methods. (+)-18C6H4 took very similar conformations for all complexes. Although the chemical structure of (+)-18C6H4 is C2-symmetric, it took a similar asymmetric ring conformation of radius ca. 6.0 A. In all complexes, the amino group of chiral amino acids was located near the center of the ring and formed three hydrogen bonds and five electrostatic interactions with eight oxygen atoms of the ether ring and carboxyl groups. Also, the Calpha atom of chiral amino acids participated in Calpha-H...O interaction with the oxygen atom of (+)-18C6H4. In contrast, the carboxyl group of chiral amino acids did not directly interact with (+)-18C6H4. These results indicate that the structural scaffold of (+)-18C6H4 for the optical resolution of chiral amino acids is mainly based on the mode of interaction of (+)-18C6H4 with the amino and Calpha-H groups of chiral amino acids. The differences in interaction pattern and binding energy between the L- and D-isomers of each amino acid are discussed in relation to the chiral recognition of (+)-18C6H4.  相似文献   

3.
(+)-(18-crown-6)-tetracarboxylic acid (18C6H4) has been known as a highly efficient chiral selector for resolving primary amine enantiomers in capillary electrophoresis (CE). We investigated the chiral separation of gemifloxacin using 18C6H4 in analytical counter-current chromatography (CCC). The separation conditions for CE, including the binding constant, pH, and run buffer constituents, provided a helpful guideline for chiral CCC. A successful separation of gemifloxacin enantiomers could be achieved using a two-phase solvent system composed of 1-butanol-ethyl-acetate-bis(2-hydroxyethyl)aminotris(hydroxymethyl)methane acetate buffer with a small amount of 18C6H4. The hydrophobicity of the solvent system and the 18C6H4 concentration were varied to optimize the chiral separation.  相似文献   

4.
Cho SI  Jung H  Chung DS 《Electrophoresis》2000,21(17):3618-3624
In capillary electrophoresis of primary amine racemates using (+)-(18-crown-6)-tetracarboxylic acid (18C6H4) as a chiral selector, chiral recognition emanates from the differences in the complex formation between 18C6H4 and the two protonated amine enantiomers. The presence of buffer constituents such as tris(hydroxymethyl)aminomethane (Tris) or Na+, capable of forming complexes with 18C6H4, is thus detrimental to the chiral separation of primary amines. Such a competitive binding of buffer constituents was studied by comparing the electrophoretic mobilities of racemic analytes obtained in Tris/citric acid and triethylamine/citric acid buffers. We developed a simple fitting method to determine the competitive binding constant and applied it to the Tris buffer system. The competitive binding constant of Tris with 18C6H4 obtained at pH 3.0 was 27 +/- 4.  相似文献   

5.
Cho SI  Lee KN  Kim YK  Jang J  Chung DS 《Electrophoresis》2002,23(6):972-977
Chiral crown ether, (+)-(18-crown-6)-tetracarboxylic acid (18C6H(4)), is an effective chiral selector for resolving enantiomeric primary amines owing to the difference in affinities between 18C6H(4) and each of the amine enantiomers. In addition to the destacking effect of sodium ion in the sample solution, the strong affinity of sodium ion to the polyether ring of crown ether is unfavorable to chiral capillary electrophoresis using 18C6H(4) as a chiral selector. In this report, the chiral separation of gemifloxacin dissolved in a saline sample matrix using 18C6H(4) was investigated. Adding a chelating agent, ethylenediaminetetraacetic acid (EDTA), to the run buffer greatly improved the separation efficiencies and peak shapes. The successful chiral separation of gemifloxacin in a urinary solution was demonstrated for both capillary and microchip electrophoresis.  相似文献   

6.
Jang J  Cho SI  Chung DS 《Electrophoresis》2001,22(20):4362-4367
In the capillary electrophoretic separation of primary amine enantiomers using (+)-(18-crown-6)-tetracarboxylic acid (18C6H4) as a chiral selector, the presence of run buffer constituents such as tris(hydroxymethyl)aminomethane (Tris) or Na+ competing with analytes for 18C6H4, diminishes the effectiveness of 18C6H4. In order to determine appropriate buffer systems for 18C6H4, various run buffer cationic components including Tris, 1,3-bis[tris(hydroxymethyl)methylamino]propane, bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane, triethanolamine, tetramethylammonium, and Na+ were compared. Quantitative studies of the effects of the competitive constituents were carried out by measuring the electrophoretic mobilities of histidine as a function of the 18C6H4 concentration. We also derived a simple equation to estimate the optimal chiral selector concentration for a maximum mobility difference in the presence of a competitive inhibitor.  相似文献   

7.
Baseline separation of 18 new substituted benzimidazole derivatives, potent AMP‐activated protein kinase (AMPK) activators, with one chiral center, was achieved by CD‐EKC using sulfated and highly sulfated CDs (SCDs and HS‐CDs) as chiral selectors. The influence of the type and concentration of the chiral selectors on the enantioseparations was investigated. The SCDs exhibit a very high enantioselectivity power since they allow excellent enantiomeric resolutions compared to those obtained with the neutral CDs. The enantiomers were resolved with analysis times around 6 min using 25 mM phosphate buffer at pH 2.5 containing either β‐S‐CD, HS‐β‐CD, HS‐γ‐CD (3 or 4% w/v) at 25°C, with a voltage of 20 kV. The apparent association constants of the inclusion complexes were calculated. The study of the solute structure‐enantioseparation relationships seems to show the high contribution of the interactions between the solutes phenyl ring and the CDs to the enantiorecognition process. The optimized method was briefly validated (LOD less than 1%) and the purity of enantiomers of compound 3 was determined. The enantiomer migration shows reversal order depending on the kind of CD.  相似文献   

8.
(+)-18-crown-6 tetracarboxylic acid (18C6H4) has been used as a chiral selector for D/L-amino acids in HPLC, where L-isomer is usually eluted prior to D-isomer, except for the case of serine. To clarify why serine exhibits the reverse order for the elusion, the chiral interactions of D- and L-serines with (+)-18C6H4 were investigated by the X-ray single crystal analyses, together with the case of D- and L-glutamic acids, which exhibit the usual elution order in HPLC. The backbone structures (amino, Calpha-H and carboxyl groups) of these four amino acids showed the nearly same interaction with (+)-18C6H4 despite their different chirality. In contrast, the hydroxyl group of L-serine side chain formed a hydrogen bond with the carboxyl group of (+)-18C6H4, whereas such a interaction was not formed for the side chain of D-serine and D- and L-glutamic acids. Thus, it was shown that the exception of D/L-serine from the first elution rule of L-isomer in HPLC is due to the presence and absence of a hydrogen bond formation of its side chain OH group.  相似文献   

9.
Enantiomer separations were performed by capillary electrophoresis-mass spectrometry (CE-MS) with (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (18C6H4) as a chiral selector. In order to prevent the introduction of the nonvolatile chiral, selector, 18C6H4, into the nozzle of the CE-MS interface and/or the orifice plate, a partial filling technique was employed in this study. By the partial filling technique, the contamination caused by the nonvolatile chiral selector was avoided not only during the analysis but also during the washing of capillary with the separation solution prior to the run. Several racemic compounds having a primary amino group were successfully separated. Racemic 3-aminopyrrolidine and racemic alpha-amino-epsilon-caprolactam have no strong UV absorption, but such compounds were detected with a high sensitivity by MS detection. In this paper, the effects of the length of separation zone and those of the 18C6H4 concentration were described. As the length of the separation zone was longer or as the concentration of 18C6H4 was higher, the enantiomer resolution was enhanced more and more. However, the optimization of 18C6H4 concentration was practically enough to obtain the baseline separation.  相似文献   

10.
Transition Metal Chemistry - (R)-[Ru(η6-p-MeC6H4iPr)Cl2{Ph2PNHCH(CH3)(C6H4-4-F)}] (1) and cis-(R,R)-[PtCl2{Ph2PNHCH(CH3)(C6H4-4-F)}2] (2) have been obtained by the reaction of the chiral...  相似文献   

11.
A chiral supramolecular compound (H3O){[cis-Rh2((C6H5)2P(C6H4))2(SO4)- (DMF)]2(μ- OC2H5)}·6C2H5OH (1) has been synthesized and characterized by X-ray single-crystal analysis. Compound 1 crystallizes in monoclinic, space group C2/c with a = 26.752(3), b = 13.5868(16), c = 26.611(3) , β = 103.891(2)°, V = 9389.5(19) 3, Z = 4, C92H114N2O18P4Rh4, Mr = 2135.49, Dc = 1.511 g/cm3, F(000) = 4384 and μ(MoKα) = 0.870 mm-1. The final R = 0.0441 and wR = 0.1186 for 8283 observed reflections with I > 2σ(I) and R = 0.0567 and wR = 0.1290 for all data. The structure of the compound is unique. It contains two inherent chiral {cis-Rh2[(C6H5)2P(C6H4)]2}2+ units which are connected not only in the equatorial positions by two sulfato ligands, but also in two of their axial positions by a μ2 ethoxide anion. The remaining axial positions of Rh24+ units in 1 are occupied by the DMF molecules. The sulfato ligands act as μ4 tridentate bridges to connect the Rh24+ units. The Rh-Rh metal-metal bond distances are comparable to those in analogous dirhodium compounds.  相似文献   

12.
Using cyclodextrin-capillary zone electrophoresis (CD-CZE), baseline separation of baclofen phaclofen, saclofen, and hydroxy-saclofen, potent gamma-aminobutyric acid(B) (GABA(B)) agonist or antagonists was achieved. A method for the enantioresolution of those analogs of GABA was developed using anionic cyclodextrins (highly sulfated CD or highly S-CD) as chiral selectors and capillaries dynamically coated with polyethylene oxide (PEO). With charged CDs we observed good resolutions due to the large electrophoretic mobility of these chiral selectors opposite to the mobility of the solutes. The highly S-alpha-CD and S-beta-CD were found to be complementary and the most effective complexing agent, allowing good enantiomeric resolution in short runtimes. The complete resolution was obtained using 25 mM phosphate buffer at pH 2.5 containing 3% w/v of highly S-alpha-CD or S-beta-CD at 25 degrees C with an applied field of 0.30 kV/cm. The apparent binding constants of the inclusion complexes were evaluated and the migration order was determined. A comparison was possible to investigate the importance of the anionic group of the molecules in the separations. The pK(a) values were determined for all four compounds in order to explain relative electrophoretic migration of the solutes.  相似文献   

13.
Enantioselective addition of aryllithiums 2a-d (Ar = Ph (a), 2-MeC(6)H(4) (b), 2-MeOC(6)H(4) (c), 1-naphthyl (d)) to 6-(dimethylamino)fulvene (1) in the presence of (-)-sparteine in toluene at -78 degrees C generated chiral cyclopentadienyllithiums (4) substituted with an N,N-dimethylamino(aryl)methyl group, where the enantioselectivities are 51, 91, 90, and 83% for 4a, 4b, 4c, and 4d, respectively. Treatment of the chiral cyclopentadienides 4 with FeCl(2) or Fe(acac)(2) gave ferrocenes, which contain an N,N-dimethylamino(aryl)methyl side chain on both of the cyclopentadienyl rings. The enantiomeric purity of the chiral ferrocenes 7 thus obtained is 99% ee or higher for those containing a 2-MeC(6)H(4) (7b) or a 2-MeOC(6)H(4) (7c) group.  相似文献   

14.
The 1H and 13C NMR spectra of compounds 1-11 and 16-22 in CDCl3 and DMSO-d6 solutions allowed structural assignment to regioisomers 1/5 and 2/6 and their regioselective cyclization products 16-18 utilizing one- and two-dimensional NMR techniques (APT, DEPT, NOE difference, COSY, NOESY, HETCOR and gHMQC, gHMBC). Temperature-dependent 1H NMR spectra of 8-anilino-5-(4-methyl-2-pentyl)-2,3-dihydro-1,5-benzothiazepin-4(5H)-one (18) indicated a free energy of activation (deltaG++) of ca 17 kcal mol(-1) for interconversion between rotamers. The 1H and 13C NMR spectra of 20 and 22 containing two chiral centers exhibit duplication of several signals, indicating the existence of two diastereomeric forms. The structure of 4 was unambiguously confirmed by x-ray crystallography.  相似文献   

15.
The reaction of [(arene)RuCl(2)](2) (arene = cymene, 1,3,5-C(6)H(3)Me(3)) and [CpRhCl(2)](2) half-sandwich complexes with tridentate heterocyclic ligands in the presence of base has been investigated. In all cases, the chloro-ligands were substituted to give metallacyclic products with ring sizes between 4 and 18 atoms. The cyclization occurs in a highly diastereoselective fashion with chiral recognition between the different metal fragments. The complexes were comprehensively characterized by elemental analysis, NMR spectroscopy, and single crystal X-ray crystallography. For 2-hydroxy-nicotinic acid and 2-amino-nicotinic acid, dinuclear structures were obtained (15-17) whereas for 2,3-dihydroxyquinoline, 2,3-dihydroxyquinoxaline, and 6-methyl-2,3-phenazinediol, trimeric assemblies were found (19-22), and for 4-imidazolecarboxylic acid, a tetrameric assembly (18) was found.  相似文献   

16.
Chiral discrimination studies using (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (18-C-6-TA) as a chiral selector were performed by high-performance liquid chromatography (HPLC) and NMR spectroscopy. The enantiomers of alanine (Ala) or alanine methyl ester (Ala-ME) were well separated on the chiral stationary phases (CSPs) derived from (+)-18-C-6-TA by HPLC. The chiral selector, (+)-18-C-6-TA, used in the CSP was also applied for the chiral discrimination of the Ala and Ala-ME enantiomers, and it discriminated these enantiomers successfully by NMR spectroscopy. The chemical shift differences (Delta Delta delta) of the alpha-proton of these enantiomers in the presence of an equimolecular solution of 18-C-6-TA were observed to be 0.10 ppm for Ala in methanol-d4 containing 10 mM H2SO4 and 0.11 ppm for Ala-ME in methanol-d4. The observed NMR results agreed with the chromatographic data on the (+)-18-C-6-TA-derived CSP by HPLC in terms of both the elution order and solvents effects.  相似文献   

17.
The ansa-zirconocene dichlorides [Me(2)Si(C(5)H(4))(3-R-C(5)H(3))]ZrCl(2) 7a-e (R = H, CH(3), cyclohexyl, -CHMe(2), -CMe(3)) were reacted with butadiene-magnesium to yield the respective (eta(4)-butadiene)metallocenes 17a-e. The chiral examples give a mixture of two s-cis and two s-trans diastereomers. The strong Lewis acid B(C(6)F(5))(3) adds selectively to a terminal butadiene carbon atom to yield the (butadiene)metallocene/B(C(6)F(5))(3) betaine complexes 18a-e. Initially, the formation of the Z-18 isomers is preferred. These consecutively rearrange to the thermodynamically favored isomers E-18. The dipolar systems 18 are active single component metallocene catalysts for the stereospecific polymerization of methyl methacrylate. With increasing steric bulk of the attached single alkyl substituent an increasingly isotactic poly(methyl methacrylate) is obtained. A similar trend is observed in the methyl methacrylate polymerization at the [Me(2)Si(C(5)H(4))(3-R-C(5)H(3))]ZrCH(3)(+) catalysts (9a-e) that were conventionally prepared by methyl abstraction from the corresponding ansa-zirconocene dimethyl complexes by treatment with B(C(6)F(5))(3). A comparison of the poly(methyl methacrylates) obtained at these two series of catalysts has revealed substantial differences in stereoselectivity that probably originate from an influence of the respective counteranions. An initial reactive intermediate of methyl methacrylate addition to the dipolar single component metallocene catalyst E-18a was experimentally observed and characterized by NMR spectroscopy at 253 K. The subsequently formed series of [PMMA-C(4)H(6)(-)B(C(6)F(5))(3)](-) anion oligomers (at the catalyst 18c) was monitored (after quenching) and characterized by electrospray mass spectrometry.  相似文献   

18.
New heterocyclic derivatives of dibenzo-18-crown-6 (DB18C6), the products of coupling of kojic acid (5-hydroxy-2-hydroxymethyl-γ-pyrone) with 4′-DB18C6-yldiazonium chloride, 4′,4″-and 4′,5″-DB18C6-diyldiazonium dichlorides and products of heterocyclization of DB18C6 mono-and dicarboxylic acids with thiosemicarbazide are prepared. Their structures are studied by the methods of 1H NMR and IR spectroscopy. Polyphosphoric acid is found to be the best agent for the heterocyclization of thiosemicarbazide with DB18C6 carboxylic derivatives. It is proven that the parent substrates, the DB18C6 mono or dicarboxylic acids, serve as phase transfer catalysts for the heterocyclization reaction. Extraction and transport properties of the obtained compounds in respect of potassium, sodium and ammonium picrates are explored.  相似文献   

19.
The reaction of [RuCl(CNN)(dppb)] (1; HCNN=6-(4-methylphenyl)-2-pyridylmethylamine) with NaOiPr in 2-propanol/C6D6 affords the alcohol adduct alkoxide [Ru(OiPr)(CNN)(dppb)].n iPrOH (5), containing the Ru-NH2 linkage. The alkoxide [Ru(OiPr)(CNN)(dppb)] (4) is formed by treatment of the hydride [Ru(H)(CNN)(dppb)] (2) with acetone in C6D6. Complex 5 in 2-propanol/C6D6 equilibrates quickly with hydride 2 and acetone with an exchange rate of (5.4+/-0.2) s(-1) at 25 degrees C, higher than that found between 4 and 2 ((2.9+/-0.4) s(-1)). This fast process, involving a beta-hydrogen elimination versus ketone insertion into the Ru-H bond, occurs within a hydrogen-bonding network favored by the Ru-NH2 motif. The cationic alcohol complex [Ru(CNN)(dppb)(iPrOH)](BAr(f)4) (6; Ar(f)=3,5-C6H3(CF3)2), obtained from 1, Na[BAr(f)4], and 2-propanol, reacts with NaOiPr to afford 5. Complex 5 reacts with either 4,4'-difluorobenzophenone through hydride 2 or with 4,4'-difluorobenzhydrol through protonation, affording the alkoxide [Ru(OCH(4-C6H4F)2)(CNN)(dppb)] (7) in 90 and 85 % yield of the isolated product. The chiral CNN-ruthenium compound [RuCl(CNN)((S,S)-Skewphos)] (8), obtained by the reaction of [RuCl2(PPh3)3] with (S,S)-Skewphos and orthometalation of HCNN in the presence of NEt3, is a highly active catalyst for the enantioselective transfer hydrogenation of methylaryl ketones (turnover frequencies (TOFs) of up to 1.4 x 10(6) h(-1) at reflux were obtained) with up to 89% ee. Also the ketone CF3CO(4-C6H4F), containing the strong electron-withdrawing CF3 group, is reduced to the R alcohol with 64% ee and a TOF of 1.5 x 10(4) h(-1). The chiral alkoxide [Ru(OiPr)(CNN)((S,S)-Skewphos)]n iPrOH (9), obtained from 8 and NaOiPr in the presence of 2-propanol, reacts with CF3CO(4-C6H4F) to afford a mixture of the diastereomer alkoxides [Ru(OCH(CF3)(4-C6H4F))(CNN)((S,S)-Skewphos)] (10/11; 74% yield) with 67% de. This value is very close to the enantiomeric excess of the alcohol (R)-CF3CH(OH)(4-C6H4F) formed in catalysis, thus suggesting that diastereoisomeric alkoxides with the Ru-NH2 linkage are key species in the catalytic asymmetric transfer hydrogenation reaction.  相似文献   

20.
[reaction: see text] trans-RuCl2[P(C6H4-4-CH3)3]2(NH2CH2CH2NH2) acts as a highly effective precatalyst for the hydrogenation of a variety of benzophenone derivatives to benzhydrols that proceeds smoothly at 8 atm and 23-35 degrees C in 2-propanol containing t-C4H9OK with a substrate/catalyst ratio of 2000-20000. Use of a BINAP/chiral diamine Ru complex effects asymmetric hydrogenation of various ortho-substituted benzophenones and benzoylferrocene to chiral diarylmethanols with consistently high ee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号