首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaccher MP  Lipka E  Bonte JP  Vaccher C 《Electrophoresis》2004,25(7-8):1111-1119
Using cyclodextrin-capillary zone electrophoresis (CD-CZE), baseline separation of baclofen, a potent GABA(B) agonist; was achieved. A method for the enantioresolution of this gamma-aminobutyric acid (GABA) and determination of enantiomeric purity was developed using CDs (highly sulfated-CD or highly S-CD) as chiral selectors and capillaries dynamically coated with polyethylene oxide (PEO). Operational parameters, such as the nature and concentration of the chiral selectors, buffer concentration, organic modifiers, and applied voltage, were investigated. The use of charged CDs provides a driving force in the opposite direction of the positively charged baclofen in the running buffer and enantiomeric resolution by inclusion of compounds in the CD cavity. Highly S-beta-CD was found to be the most effective complexing agent, allowing good enantiomeric resolution. The complete resolution was obtained using 25 mM phosphate buffer, pH 2.5, containing 3% w/v highly S-beta-CD at 25 degrees C with aN applied field of 0.40 kV/cm. The apparent association constants of the inclusion complexes were calculated. This optimized method was validated in terms of repeatability and limits of detection (0.13 microg x mL(-1)) and quantification. The migration order was determined.  相似文献   

2.
Baseline separation of some new acyclic nucleosides which are potential antiviral agents was achieved using cyclodextrin capillary zone electrophoresis (CD-CZE). A method for the enantiomeric resolution of these compounds and determination of their enantiomeric purity was developed using anionic CDs (highly sulfated-CD or highly S-CD) as chiral selectors and capillaries, which were dynamically coated with polyethylene oxide (PEO). Operational parameters including (i) the nature and concentration of the chiral selectors, (ii) organic modifiers, (iii) temperature, and (iv) applied voltage were investigated. The use of charged CDs provides (i) a supplementary driving force for the compounds in a running buffer and (ii) enantiomeric resolution by inclusion of compounds in the CD cavity. The highly S-CD was found to be the most effective complexing agent and allowed good enantiomeric resolution. The complete resolution of five nucleoside analogs was obtained using 25 mM phosphate buffer, pH 2.5, containing either highly S-alpha-CD, S-beta-CD or S-gamma-CD at 30 degrees C with an applied field of 0.30 kV/cm. The apparent association constants of the inclusion complexes were calculated. The enantiomer migration order for the molecules investigated was determined and the detection limit of enantiomeric impurities was found to vary between 0.34 to 3.56 ng.mL(-1) for the first enantiomer.  相似文献   

3.
Baseline separation of ten new substituted [1-(imidazo-1-yl)-1-phenylmethyl)] benzothiazolinone and benzoxazolinone derivatives, with one chiral center, was achieved by CD-EKC using highly sulfated CDs (alpha, beta, gamma highly S-CDs) as chiral selectors. The influence of the type and concentration of the chiral selectors on the enantioseparations was investigated. The highly S-CDs exhibit a very high enantioselectivity power since they allow excellent enantiomeric resolutions compared to those obtained with the neutral CDs. The enantiomers were resolved with analysis times inferior to 2.5 min and resolution factors R(s) of 3.73, 3.90, 1.40, and 4.35 for compounds 1, 2, 3, and 5, respectively, using 25 mM phosphate buffer at pH 2.5 containing either highly S-alpha-CD, highly S-beta-CD, and highly S-gamma-CD (3 or 4% w/v) at 298 K, with an applied field of 0.30 kV/cm. The determination of the enantiomer migration order for the various analytes and the study of the analyte structure-enantioseparation relationships display the high contribution of the interactions between the analytes phenyl ring and the CDs to the enantiorecognition process. The thermodynamic study of the analyte-CD affinities permits us to improve our knowledge about the enantioseparation mechanism.  相似文献   

4.
Using cyclodextrin capillary zone electrophoresis (CD-CZE), baseline separation of synthetic tetrahydronaphthalenic derivatives, potential melatoninergic compounds, was achieved. A method for the enantioresolution of these tetralins and determination of their enantiomeric purity was developed using anionic CDs (highly sulfated-CD or highly S-CD) as chiral selectors and capillaries dynamically coated with polyethylene oxide (PEO). Operational parameters such as the nature and concentration of the chiral selectors, buffer pH, organic modifiers, temperature and applied voltage were investigated. The use of charged CDs provides a driving force for our neutral compounds in the running buffer and enantiomeric resolution by inclusion of compounds in the CD cavity. The highly S-beta-CD was found to be the most effective complexing agent, allowing good enantiomeric resolution. The complete resolution of three tetralin compounds was obtained using 25 mM phosphate buffer at pH 2.5 containing 2.5% w/v of highly S-beta-CD at 25 degrees C with an applied field of 0.25 kV/cm. The apparent association constants of the inclusion complexes were calculated. This optimized method was validated in terms of linearity, sensitivity, accuracy and recovery. The enantiomeric purity for the three molecules was determined and the detection limit of enantiomer impurities is about 0.3-0.6%.  相似文献   

5.
Lipka E  Danel C  Orhan H  Bonte JP  Vaccher C 《Electrophoresis》2007,28(21):3915-3921
EKC methods for the enantiomeric resolutions of melatoninergic ligands were developed using anionic CDs (highly S-alpha-CD, highly S-beta-CD, and highly S-gamma-CD) as chiral selectors at acidic pH 2.5. The optimization of the various operational parameters (nature and concentration of the CD, phosphate buffer concentration, addition of organic modifiers in the BGE, and temperature) allows baseline enantioresolutions (superior to 2) in short analysis times (inferior to 7 min) for all studied analytes. Some analytical characteristics of the optimal method were then studied for each analyte: repeatability, linearity, and LOD and LOQ. Lastly, determination of the apparent binding constants for the 18 complexes formed between the six analytes and the three CDs led us to rationalize the complexation mechanisms.  相似文献   

6.
Grard S  Morin P  Dreux M  Ribet JP 《Electrophoresis》2000,21(14):3028-3034
Today, chiral separations of cationic drugs by capillary electrophoresis are generally carried out by adding negatively charged cyclodextrins (CDs) to the running buffer while anionic or neutral drug separations require the use of dual-CD systems (mixtures of neutral and charged CDs). Chiral separation of some basic drugs (idazoxan, efaroxan, milnacipran) has been studied by using mixtures of sulfated-beta-CD (S-beta-CD) and hydroxypropyl-gamma-CD (HP-gamma-CD). The influence of the following parameters (nature and concentration of neutral CD, concentration of S-gamma-CD) on many separation factors (electrophoretic mobility, selectivity, efficiency, asymmetry factor, resolution) demonstrated that dual-CD systems are useful for chiral separation of basic drugs in order to improve the symmetry of the second-migrating enantiomer. Indeed, the neutral CD reduces the extent of electromigration dispersion by mobility tuning. Finally, the 0.5 mg/mL S-beta-CD/5 mg/mL HP-gamma-CD dual system has allowed the chiral separation of idazoxan, efaroxan and milnacipran enantiomers in less than 9 min.  相似文献   

7.
《Analytical letters》2012,45(15):2356-2371
Today, capillary zone electrophoresis (CZE) is became an established method for the determination of chiral impurities. A method for the enantioresolution of these benzoxazolinone aminoalcohols and their aminoketon precursors, potential adrenergic ligands, was developed using neutral and anionic cyclodextrins as chiral selectors. Operational parameters, such as the nature and concentration of the chiral selectors, temperature, and applied voltage, were investigated. The influence of the structural features of the solutes on migration time and resolution was studied. The apparent and averaged binding constants of complexes were calculated.  相似文献   

8.
18-Crown-6-tetracarboxylic acid (18C6H4) and highly sulfated cyclodextrins (HS-alpha-, beta-, gamma-CDs) are highly selective chiral selectors for the enantioseparation of solutes bearing the primary amino function. Excellent resolutions were obtained for all solutes on HS-gamma-CD and on 18C6H4. The former, however, is by far the best chiral selector for the solutes studied in this work because the highest resolution is obtained with the shortest migration times. The reversal of the D- and L-migration order on HS-CDs compared to 18C6H4 is an interesting feature for the determination of enantiomeric excess.  相似文献   

9.
Chiral separations of three hydroxyflavanone aglycones, including 2'-, 3'-, and 4'-hydroxyflavanone, in capillary zone electrophoresis (CZE) using randomly sulfate-substituted beta-cyclodextrin (S-beta-CD) or dual cyclodextrin (CD) systems consisting of S-beta-CD and a neutral CD at low pH were investigated. The results indicate that S-beta-CD is an excellent chiral selector for enantioseparation of 2'-hydroxyflavanone and is a good chiral selector for 3'-hydroxyflavanone. Depending on the concentration of S-beta-CD ranging from 2.0 to 0.75% (w/v), the enantioresolution values were 10.5-19.5 and 1.8-3.4 for 2'- and 3'-hydroxyflavanone, respectively. The enantiomers of 4'-hydroxyflavanone could be effectively separated with S-beta-CD at a concentration of 2.0% (w/v) within 20 min. The enantioselectivity and enantioresolution follow the order 2'-hydroxyflavanone>3'-hydroxyflavanone>4'-hydroxyflavanone. Alternatively, with the addition of sodium dodecyl sulfate (SDS) monomers at low concentrations in the electrophoretic system, enantioselectivity of these hydroxyflavanone aglycones could be enhanced with dual CD systems. In this case, SDS monomer acted as a complexing agent probably first with S-beta-CD and then subsequently with the analytes for increasing the effective electrophoretic mobility of the analytes towards the anode and as a selectivity controller for affecting the selectivity of hydroxyflavanones. Better enantioseparation between 2'-hydroxyflavanone and 3'-hydroxyflavanone could be achieved with a dual CD system consisting of S-beta-CD and gamma-CD than that with S-beta-CD and beta-CD. In addition, possible chiral recognition mechanisms of hydroxyflavanones are discussed.  相似文献   

10.
Baseline separation of ten new, substituted [1-(imidazo-1-yl)-1-phenylmethyl)] benzothiazolinone and benzoxazolinone derivatives with one chiral center was achieved using cyclodextrin-capillary zone electrophoresis (CD-CZE). A method for the enantiomeric resolution of these compounds was developed using neutral CDs (native alpha-, beta-, gamma-CDs or alpha-, beta-, gamma-hydroxypropyl (HP)-CDs) as chiral selectors. Operational parameters including the nature and concentration of the chiral selectors, pH, ionic strength, organic modifiers, temperature, and applied voltage were investigated. The use of neutral CDs provides enantiomeric resolution by inclusion of compounds in the CD cavity. The HP-alpha-CD and HP-beta-CD were found to be the most effective complexing agents and allowed efficient enantiomeric resolutions. Optimal separation of N-imidazole derivatives was obtained using 50 mM phosphate buffer at pH 2.5 containing either HP-alpha-CD or HP-beta-CD (7.5-12.5 mM) at 25 degrees C, with an applied field of 0.50 kV.cm(-1) giving resolution factors Rs superior to 1.70 with migration times of the second enantiomer less than 13 min. The same enantiomer migration order observed for all molecules can be related to a close interaction mechanism with CDs. The influence of structural features of the solutes on Rs and tm was studied. The lipophilic character (log kw) of the solutes and the apparent and averaged association constants of inclusion complexes for four compounds with the six different CDs led us to rationalize the enantioseparation mechanisms. The conclusions were corroborated with reversed-phase high-performance liquid chromatography (HPLC) on chiral stationary phases (CSPs) based on CDs.  相似文献   

11.
Baseline separation of 18 new substituted benzimidazole derivatives, potent AMP‐activated protein kinase (AMPK) activators, with one chiral center, was achieved by CD‐EKC using sulfated and highly sulfated CDs (SCDs and HS‐CDs) as chiral selectors. The influence of the type and concentration of the chiral selectors on the enantioseparations was investigated. The SCDs exhibit a very high enantioselectivity power since they allow excellent enantiomeric resolutions compared to those obtained with the neutral CDs. The enantiomers were resolved with analysis times around 6 min using 25 mM phosphate buffer at pH 2.5 containing either β‐S‐CD, HS‐β‐CD, HS‐γ‐CD (3 or 4% w/v) at 25°C, with a voltage of 20 kV. The apparent association constants of the inclusion complexes were calculated. The study of the solute structure‐enantioseparation relationships seems to show the high contribution of the interactions between the solutes phenyl ring and the CDs to the enantiorecognition process. The optimized method was briefly validated (LOD less than 1%) and the purity of enantiomers of compound 3 was determined. The enantiomer migration shows reversal order depending on the kind of CD.  相似文献   

12.
Capillary electrophoresis methods for the enantioresolution of two beta-blockers possessing two chiral centers--labetalol and nadolol--were developed using electrokinetic chromatography. These methods were based on the addition of sulfated beta-cyclodextrins (S-betaCD) as chiral selectors to the background electrolyte (BGE). Different operating parameters (pH and ionic strength of the BGE, concentration of S-beta-CD) were investigated using a normal or reversed polarity mode. A complete resolution of the four isomers of labetalol was obtained either at the cathode or at the anode according to the pH of the BGE. The resolution of nadolol was observed whatever polarity of the applied voltage but a baseline separation of the four enantiomers within a time of analysis appropriate to routine assay was only obtained at the anode. This optimal separation was performed using high concentrations of chiral additive in an acidic pH buffer of low molarity. Besides the complete enantiomeric separation of the beta-blockers studied, the interest of the proposed methods is to permit a reversal of the migration order of the different enantiomers. This could be of high interest in quality control for the study of enantiomeric purity, which is now required for the development of drugs and chemicals.  相似文献   

13.
EKC methods for the enantiomeric resolution of homocamptothecin derivatives, potent anticancer agents targeting DNA topoisomerase I selected for clinical trials, were developed using highly sulfated beta-CD as chiral selectors at acidic pH. Optimal electrophoretic conditions, with migration times under 15 min, were as follows: for the neutral homocamptothecin analog 1, a BGE of 75 mM phosphate buffer pH 2.5 (H(3)PO(4) + triethanolamine)/ACN - 95/5 v/v, with 7.5% w/v highly S-beta-CD, an applied field of 0.2 kV/cm and a fused capillary temperature control of 30 +/- 0.1 degrees C (typical current approximately 175 microA); for the cationic homocamptothecin 2, a BGE of 25 mM phosphate buffer pH 2.5 (H(3)PO(4) + TEA)/ACN - 90/10 v/v, with 2.5% w/v highly S-beta-CD, an applied field of 0.15 kV/cm and a fused capillary temperature control of 25 +/- 0.1 degrees C (typical current approximately 45 muA), and both are validated. The best results in terms of LOQ were obtained by EC with fluorescence detection: 10 ng/mL and 20 ng/mL for 1 and 2, respectively (LOQ divided by 150 for 1 and 5 for 2 with respect to UV), thus making this method particularly convenient for enantiomeric purity determination of galenic forms. UV detection appears to be an alternative to fluorescence for the analysis of the main component either for the control of galenic forms or for therapeutic adaptation. Moreover, this method exhibits better performances than HPLC.  相似文献   

14.
Compounds 1-4 are the four stereoisomers of a synthetic new potential antiviral agent (d4T analog) containing two chiral centers and a base (uracil). Both high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) techniques were used to separate and quantify enantiomers with high resolution. The determination of enantiomeric purity of the compounds was developed using both amylose chiral stationary phase by HPLC and anionic cyclodextrins (highly S-CD) as chiral selectors in CE. The HPLC method was found to be superior in sensitivity to the CE method.  相似文献   

15.
The possibility to enhance resolution to infinite value in chiral capillary electrophoresis is attained as soon as the apparent mobility of one enantiomer becomes opposite to the other. This could be achieved on the basis of the carrier ability of multiple charged chiral selectors such as highly sulfated cyclodextrin (HS-CD). With tramadol and its phase I metabolites selected as model compounds, the HS-gamma-CD was found to be the most appropriate chiral selector. The CD concentration was determined where one enantiomer still migrated as a cation while the other migrated in the opposite side. Besides the chiral selector concentration, secondary parameters such as buffer concentration appeared to be critical to reach infinite resolution. The latter was achieved with partial filling technique using ultrashort separation zones (a few mm). In order to better understand the interaction mechanism between the selected CD and the analytes, the classical affinity capillary electrophoresis method, although not fully satisfactory because of ionic strength variations within a series of mobility shift measurements, was applied to estimate complexation constants and complex mobilities. The results obtained point to the prevailing role of complex mobility differences in the enantioselectivity mechanism.  相似文献   

16.
CE was used to study the separation of the atropoisomers of four phosphoric acids and two sulfonic acids and the enantiomers of two phosphoric acids. All solutes are in their anionic forms in aqueous electrolytes. The chiral additives were two hydroxypropyl cyclodextrins (CDs) and cyclofructan 6 (CF6). The CDs were able to separate four solutes and the CF6 additive could separate only one: 1,1′‐binaphthyl‐2,2′‐diyl hydrogenphosphate (BHP). Since CF6 is able to bind with cations, nitrate of alkaline metals, Ba2+, and Pb2+ were added, greatly improving the BHP separation at the expense of longer migration times. There seems to be a link between CF6–cation‐binding constants and BHP resolution factors. Cation additions were also performed with CD selectors that are less prone to form complexes with cations. Significant improvements of enantiomer or atropoisomer separations were observed also associated with longer migration times. It is speculated that the anionic solutes associate with the added cations forming larger entities better differentiated by CDs.  相似文献   

17.
Chen F  Zhang S  Qi L  Chen Y 《Electrophoresis》2006,27(14):2896-2904
Chiral separation of 19 pairs of amino acid (AA) enantiomers derivatized with 9-fluorenylmethylchloroformate (FMOC) was successfully conducted by capillary electrophoresis using the mixture of beta-CD and sodium taurodeoxycholate (STDC) as selectors. Resolution was considerably superior to that obtained by using either beta-CD or STDC alone. After a systematic inspection, a buffer composed of 150 mM borate and 18% v/v isopropanol at pH 8.0, dissolved with 30 mM beta-CD and 30 mM STDC, was adopted and able to generate baseline resolution (>1.50) for 17 pairs of FMOC-AA enantiomers and somewhat lower resolution for arginine (1.36) and alanine (1.18), respectively. Experimental data revealed that the addition of the second selector did not increase the mobility difference between a pair of enantiomers (Delta mu = mu(D) - mu(L) and the number of theoretical plates (N), but decreased the summed apparent mobility of a pair of enantiomers (Sigma mu = mu(D) - mu(L)), which was mainly due to the decrease of the electroosmotic flow. The variation of Sigma mu was thus the major reason responsible for the improvement of chiral resolution in this study. The result demonstrated that not only the intrinsic selectivity of the selectors was the basis of the chiral separation, but also the non-chiral effect of the selectors, the change of the electroosmotic flow, was an important factor in enhancing the enantioseparation resolution. This study could probably help to explain the reasons for resolution improvement in some dual selectors systems, which are not very clear at present.  相似文献   

18.
Three charged substituted beta-cyclodextrins (beta-CDs), sulfobutylether-beta-(SBE-beta-CD), degree of substitution (DS) 4 and 7), and sulfated-beta-(S-beta-CD) cyclodextrins, were compared as chiral additives in capillary electrophoresis for the enantiomeric separation of basic spirobenzopyran derivatives (pKa 9.9) which differ from each other by an N-alkyl group. The number of sulfobutylether groups attached to the cyclodextrin moiety significantly influences the enantioseparation of the basic drugs. SBE-beta-CD (DS 7) which is more strongly bound to cationic analyte than SBE-beta-CD (DS 4.6), requires smaller concentrations to achieve the same resolution. Besides, better enantioresolutions were obtained with S-beta-CD rather than with SBE-beta-CDs though higher concentrations are required, which led to high current values. However, both pairs of enantiomers cannot be resolved using S-beta-CD while SBE-beta-CDs make it possible to resolve simultaneous enantioseparation of such solutes slightly differing in hydrophobicity. This supports the hypothesis that hydrophobic interactions (outside of the CD cavity) between the butyl group attached to SBE-beta-CD and the N-alkyl group of spirobenzopyran play a role in the enantioseparation. On the other hand, the sulfate group of S-beta-CD was directly attached to the CD moiety which means that the S-beta-CD-drug complexation mechanism arises through the combination of electrostatic and hydrophobic (inside the CD cavity) interactions. Finally, enantiomers of spirobenzopyran drugs were satisfactorily resolved by CE using a 20 mg/mL S-beta-CD concentration (resolution 4.0), 7 mg/mL SBE-beta-CD DS 4 (resolution 1.3), or 5 mg/mL SBE-beta-CD DS 7 (resolution 3.3) added to the phosphate buffer (pH 2.6, 50 mM ionic strength).  相似文献   

19.
胶束电动毛细管色谱法分析手性化合物   总被引:4,自引:0,他引:4  
何友昭  郑明珠  淦五二 《色谱》1999,17(1):26-29
对近年来胶束电动毛细管色谱法(MECC)分析手性化合物方面的工作进行了评述,简述了MECC分离手性化合物的原理,并探讨了几种MECC手性分离体系的分离机理。  相似文献   

20.
A capillary electrophoretic method for the enantioseparation of ofloxacin and its five related substances (potential impurities, indicated as impurities B–F) was developed using β‐cyclodextrin derivatives as chiral selectors. To our knowledge, there are no previous studies about using capillary electrophoresis for the separation of impurities B–D. Six β‐cyclodextrin derivatives including cationic (piperidine‐ and cyclohexylamine‐), neutral (dimethyl‐ and hydroxypropyl‐), and anionic (carboxymethyl‐ and sulfated‐) β‐cyclodextrin derivatives were tested and operational parameters such as buffer pH and concentration of β‐cyclodextrin derivatives were investigated. The best resolutions were all obtained with anionic β‐cyclodextrin derivatives: ofloxacin, impurities C–F could be best resolved with carboxymethyl‐β‐cyclodextrin at satisfactory resolutions of 8.27, 9.98, 5.92, 8.49 and 6.78, respectively, while for impurity B, a particularly impressive resolution value, up to 21.38, was observed using sulfated‐β‐cyclodextrin. The enhancement of enantioseparation observed for the tested analytes using anionic β‐cyclodextrin derivatives might be due to some favorable interaction between selectors and analytes. Given the fact that the selection of chiral selector depends on the structures of analytes, with the help of structural similarities and differences of the analytes, the structure–separation relationship was further discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号