首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In general, proofs of convergence and stability are difficult for symplectic schemes of nonlinear equations. In this paper, a symplectic difference scheme is proposed for an initial-boundary value problem of a coupled nonlinear Schrödinger system. An important lemma and an induction argument are used to prove the unique solvability, convergence and stability of numerical solutions. An iterative algorithm is also proposed for the symplectic scheme and its convergence is proved. Numerical examples show the efficiency of the symplectic scheme and the correction of our numerical analysis.  相似文献   

2.
Symplectic integrators have been developed for solving the two-dimensional Gross-Pitaevskii equation. The equation is transformed into a Hamiltonian form with symplectic structure. Then, symplectic integrators, including the midpoint rule, and a splitting symplectic scheme are developed for treating this equation. It is shown that the proposed codes fulfill the discrete charge conservation law. Furthermore, the global error of the numerical solution is theoretically estimated. The theoretical analysis is supported by some numerical simulations.  相似文献   

3.
A nonlinear finite difference scheme with high accuracy is studied for a class of two-dimensional nonlinear coupled parabolic-hyperbolic system. Rigorous theoretical analysis is made for the stability and convergence properties of the scheme, which shows it is unconditionally stable and convergent with second order rate for both spatial and temporal variables. In the argument of theoretical results, difficulties arising from the nonlinearity and coupling between parabolic and hyperbolic equations are overcome, by an ingenious use of the method of energy estimation and inductive hypothesis reasoning. The reasoning method here differs from those used for linear implicit schemes, and can be widely applied to the studies of stability and convergence for a variety of nonlinear schemes for nonlinear PDE problems. Numerical tests verify the results of the theoretical analysis. Particularly it is shown that the scheme is more accurate and faster than a previous two-level nonlinear scheme with first order temporal accuracy.  相似文献   

4.
Based on multiquadric trigonometric quasi-interpolation, the paper proposes a meshless symplectic scheme for Hamiltonian wave equation with periodic boundary conditions. The scheme first discretizes the equation in space using an iterated derivative approximation method based on multiquadric trigonometric quasi-interpolation and then in time with an appropriate symplectic scheme. This in turn yields a finite-dimensional semi-discrete Hamiltonian system whose energy and momentum (approximations of the continuous ones) are invariant with respect to time. The key feature of the scheme is that it conserves both the energy and momentum of the Hamiltonian system for both uniform and scattered centers, while classical energy-momentum conserving schemes are only for uniform centers. Numerical examples provided at the end of the paper show that the scheme is efficient and easy to implement.  相似文献   

5.
The Ostrovsky equation describes gravity waves under the influence of Coriolis force. It is known that solutions of this equation conserve the L2 norm and an energy function that is determined non-locally. In this paper we propose four conservative numerical schemes for this equation: a finite difference scheme and a pseudospectral scheme that conserve the norm, and the same types of schemes that conserve the energy. A numerical comparison of these schemes is also provided, which indicates that the energy conservative schemes perform better than the norm conservative schemes.  相似文献   

6.
Summary The numerical integration of a wide class of Hamiltonian partial differential equations by standard symplectic schemes is discussed, with a consistent, Hamiltonian approach. We discretize the Hamiltonian and the Poisson structure separately, then form the the resulting ODE's. The stability, accuracy, and dispersion of different explicit splitting methods are analyzed, and we give the circumstances under which the best results can be obtained; in particular, when the Hamiltonian can be split into linear and nonlinear terms. Many different treatments and examples are compared.  相似文献   

7.
Hamiltonian PDEs have some invariant quantities, which would be good to conserve with the numerical integration. In this paper, we concentrate on the nonlinear wave and Schrödinger equations. Under hypotheses of regularity and periodicity, we study how a symmetric space discretization makes that the space discretized system also has some invariants or `nearly' invariants which well approximate the continuous ones. We conjecture some facts which would explain the good numerical approximation of them after time integration when using symplectic Runge-Kutta methods or symmetric linear multistep methods for second-order systems.  相似文献   

8.
In this paper we estimate the error of upwind first order finite volume schemes applied to scalar conservation laws. As a first step, we consider standard upwind and flux finite volume scheme discretization of a linear equation with space variable coefficients in conservation form. We prove that, in spite of their lack of consistency, both schemes lead to a first order error estimate. As a final step, we prove a similar estimate for the nonlinear case. Our proofs rely on the notion of geometric corrector, introduced in our previous paper by Bouche et al. (2005) [24] in the context of constant coefficient linear advection equations.  相似文献   

9.
In this paper, we systematically construct two classes of structure-preserving schemes with arbitrary order of accuracy for canonical Hamiltonian systems. The one class is the symplectic scheme, which contains two new families of parameterized symplectic schemes that are derived by basing on the generating function method and the symmetric composition method, respectively. Each member in these schemes is symplectic for any fixed parameter. A more general form of generating functions is introduced, which generalizes the three classical generating functions that are widely used to construct symplectic algorithms. The other class is a novel family of energy and quadratic invariants preserving schemes, which is devised by adjusting the parameter in parameterized symplectic schemes to guarantee energy conservation at each time step. The existence of the solutions of these schemes is verified. Numerical experiments demonstrate the theoretical analysis and conservation of the proposed schemes.  相似文献   

10.
High order compact Alternating Direction Implicit scheme is given for solving the generalized sine-Gordon equation in a two-dimensional rectangular domain. We apply the compact finite difference operators to obtain a fourth order discretization for the second order space derivatives, and we give a linearized three time level algorithm for solving the original nonlinear equation. Error estimate is given by the energy method. Numerical results are provided to verify the accuracy and efficiency of this algorithm.  相似文献   

11.
Summary A fully discrete finite element method for the Cahn-Hilliard equation with a logarithmic free energy based on the backward Euler method is analysed. Existence and uniqueness of the numerical solution and its convergence to the solution of the continuous problem are proved. Two iterative schemes to solve the resulting algebraic problem are proposed and some numerical results in one space dimension are presented.  相似文献   

12.
In this paper, we present two classes of symplectic schemes with high order accuracy for solving four-order rod vibration equation utt uxxxx=0 via the third type generating function method. First, the equation of four order rod vibration is written into the canonical Hamilton system; second, overcoming successfully the essential difficult on the calculus of high order variations derivative, we get the semi-discretization with arbitrary order of accuracy in time direction for the PDEs by the third type generating function method. Furthermore the discretization of the related modified equation of original equation is obtained. Finally, arbitrary order accuracy symplectic schemes are obtained. Numerical results are also presented to show the effectiveness of the scheme, high order accuracy and properties of excellent long-time numerical behavior.  相似文献   

13.
In this paper, we present some results of a study, specifically within the framework of symplectic geometry, of difference schemes for numerical solution of the linear Hamiltonian systems. We generalize the Cayley transform with which we can get different types of symplectic schemes. These schemes are various generalizations of the Euler centered scheme. They preserve all the invariant first integrals of the linear Hamiltonian systems.  相似文献   

14.
Summary. We construct a new third-order semi-discrete genuinely multidimensional central scheme for systems of conservation laws and related convection-diffusion equations. This construction is based on a multidimensional extension of the idea, introduced in [17] – the use of more precise information about the local speeds of propagation, and integration over nonuniform control volumes, which contain Riemann fans. As in the one-dimensional case, the small numerical dissipation, which is independent of , allows us to pass to a limit as . This results in a particularly simple genuinely multidimensional semi-discrete scheme. The high resolution of the proposed scheme is ensured by the new two-dimensional piecewise quadratic non-oscillatory reconstruction. First, we introduce a less dissipative modification of the reconstruction, proposed in [29]. Then, we generalize it for the computation of the two-dimensional numerical fluxes. Our scheme enjoys the main advantage of the Godunov-type central schemes –simplicity, namely it does not employ Riemann solvers and characteristic decomposition. This makes it a universal method, which can be easily implemented to a wide variety of problems. In this paper, the developed scheme is applied to the Euler equations of gas dynamics, a convection-diffusion equation with strongly degenerate diffusion, the incompressible Euler and Navier-Stokes equations. These numerical experiments demonstrate the desired accuracy and high resolution of our scheme. Received February 7, 2000 / Published online December 19, 2000  相似文献   

15.
We present the results of a set of numerical experiments designed to investigate the appropriateness of various integration schemes for molecular dynamics simulations. In particular, we wish to identify which numerical methods, when applied to an ergodic Hamiltonian system, sample the state-space in an unbiased manner. We do this by describing two Hamiltonian system for which we can analytically compute some of the important statistical features of its trajectories, and then applying various numerical integration schemes to them. We can then compare the results from the numerical simulation against the exact results for the system and see how closely they agree. The statistic we study is the empirical distribution of particle velocity over long trajectories of the systems. We apply four methods: one symplectic method (Störmer–Verlet) and three energy-conserving step-and-project methods. The symplectic method performs better on both test problems, accurately computing empirical distributions for all step-lengths consistent with stability. Depending on the test system and the method, the step-and-project methods are either no longer ergodic for any step length (thus giving the wrong empirical distribution) or give the correct distribution only in the limit of step-size going to zero.  相似文献   

16.
方程=f(x)十字架格式   总被引:2,自引:1,他引:1  
秦孟兆 《计算数学》1991,13(1):67-75
描述了单个含有单位质量的质点在保守力f(x)作用下一维运动的位移.这个系统的主要特点是能量守恒:  相似文献   

17.
This article proposes a class of high‐order energy‐preserving schemes for the improved Boussinesq equation. To derive the energy‐preserving schemes, we first discretize the improved Boussinesq equation by Fourier pseudospectral method, which leads to a finite‐dimensional Hamiltonian system. Then, the obtained semidiscrete system is solved by Hamiltonian boundary value methods, which is a newly developed class of energy‐preserving methods. The proposed schemes can reach spectral precision in space, and in time can reach second‐order, fourth‐order, and sixth‐order accuracy, respectively. Moreover, the proposed schemes can conserve the discrete mass and energy to within machine precision. Furthermore, to show the efficiency and accuracy of the proposed methods, the proposed methods are compared with the finite difference methods and the finite volume element method. The results of several numerical experiments are given for the propagation of the single solitary wave, the interaction of two solitary waves and the wave break‐up.  相似文献   

18.
Summary. We consider a fully practical finite element approximation of the fourth order nonlinear degenerate parabolic equation where generically for any given . An iterative scheme for solving the resulting nonlinear discrete system is analysed. In addition to showing well-posedness of our approximation, we prove convergence in one space dimension. Finally some numerical experiments are presented. Received July 29, 1997  相似文献   

19.
We derive a new high-order compact finite difference scheme for option pricing in stochastic volatility models. The scheme is fourth order accurate in space and second order accurate in time. Under some restrictions, theoretical results like unconditional stability in the sense of von Neumann are presented. Where the analysis becomes too involved we validate our findings by a numerical study. Numerical experiments for the European option pricing problem are presented. We observe fourth order convergence for non-smooth payoff.  相似文献   

20.
A nonlinear iteration method named the Picard-Newton iteration is studied for a two-dimensional nonlinear coupled parabolic-hyperbolic system. It serves as an efficient method to solve a nonlinear discrete scheme with second spatial and temporal accuracy. The nonlinear iteration scheme is constructed with a linearization-discretization approach through discretizing the linearized systems of the original nonlinear partial differential equations. It can be viewed as an improved Picard iteration, and can accelerate convergence over the standard Picard iteration. Moreover, the discretization with second-order accuracy in both spatial and temporal variants is introduced to get the Picard-Newton iteration scheme. By using the energy estimate and inductive hypothesis reasoning, the difficulties arising from the nonlinearity and the coupling of different equation types are overcome. It follows that the rigorous theoretical analysis on the approximation of the solution of the Picard-Newton iteration scheme to the solution of the original continuous problem is obtained, which is different from the traditional error estimate that usually estimates the error between the solution of the nonlinear discrete scheme and the solution of the original problem. Moreover, such approximation is independent of the iteration number. Numerical experiments verify the theoretical result, and show that the Picard-Newton iteration scheme with second-order spatial and temporal accuracy is more accurate and efficient than that of first-order temporal accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号