首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Performance of dye-sensitized solar cells (DSCs) was investigated depending on the compositions of the electrolyte, i.e., the electrolyte with a different cation such as Li(+), tetra-n-butylammonium (TBA(+)), or 1,2-dimethyl-3-propylimidazolium (DMPIm(+)) in various concentrations, with and without 4-tert-butylpyridine (tBP), and with various concentrations of the I(-)/I(3)(-) redox couple. Current-voltage characteristics, electron lifetime, and electron diffusion coefficient were measured to clarify the effects of the constituents in the electrolyte on the charge recombination kinetics in the DSCs. Shorter lifetimes were found for the DSCs employing adsorptive cations of Li(+) and DMPIm(+) than for a less-adsorptive cation of TBA(+). On the other hand, the lifetimes were not influenced by the concentrations of the cations in the solutions. Under light irradiation, open-circuit voltages of DSCs decreased in the order of TBA(+)> DMPIm(+) > Li(+), and also decreased with the increase of [Li(+)]. The decreases of open-circuit voltage (V(oc)) were attributed to the positive shift of the TiO(2) conduction band potential (CBP) by the surface adsorption of DMPIm(+) and Li(+). These results suggest that the difference of the free energies between that of the electrons in the TiO(2) and of I(3)(-) has little influence on the electron lifetimes in the DSCs. The shorter lifetime with the adsorptive cations was interpreted with the thickness of the electrical double layer formed by the cations, and the concentration of I(3)(-) in the layer, i.e., TBA(+) formed thicker double layer resulting in lower concentration of I(3)(-) on the surface of the TiO(2). The addition of 4-tert-butylpyridine (tBP) in the presence of Li(+) or TBA(+) showed no significant influence on the lifetime. The increase of V(oc) by the addition of tBP into the electrolyte containing Li(+) and the I(-)/I(3)(-) redox couple was mainly attributed to the shift of the CBP back to the negative potential by reducing the amount of adsorbed Li cations.  相似文献   

2.
Dye-sensitized solar cells (DSC) were prepared from nanoporous TiO(2) electrodes with two different cobalt complex redox couples, propylene-1,2-bis(o-iminobenzylideneaminato)cobalt(II) {Co(II)(abpn)} and tris(4,4'-di-tert-buthyl-2,2'-bipyridine)cobalt(II) diperchlorate {Co(II)(dtb-bpy)(3)(ClO(4))(2)}. The performances of the DSCs were examined with varying the concentrations of the redox couples and Li cations in methoxyacetonitrile. Under 1 sun conditions, short-circuit currents (J(sc)) increased with the increase of the redox couple concentration, and the maximum J(sc) was found at the Li(+) concentration of 100 mM. To rationalize the observed trends of J(sc), electron diffusion coefficients and lifetimes in the DSCs were measured. Electron diffusion coefficients in the DSCs using cobalt complexes were comparable to the previously reported values of nanoporous TiO(2). Electron lifetime was independent of the concentration of the redox couples when the concentration ratio of Co(II)(L) and Co(III)(L) was fixed. With the increase of Li(+) concentration, the electron lifetime increased. These results were interpreted as due to their slow charge-transfer kinetics and the cationic nature of Co complex redox couples, in contrast to the anionic redox couple of I(-)/I(3)(-). The increase of the lifetimes with Li(+) was interpreted with the decrease of the local concentration of Co(III) near the surface of TiO(2). The addition of 4-tert-butylpyridine (tBP) with the presence of Li(+) increased J(sc) significantly. The observed increase of the electron lifetime by tBP could not explain the large increase of J(sc), implying that tBP facilitates the charge transfer from Co(II)(L) to dye cation, with the association of the change of the reorganization energy between Co(II) and Co(III).  相似文献   

3.
A series of novel metal-free organic dyes TC301-TC310 with relatively high HOMO levels were synthesized and applied in dye-sensitized solar cells (DSCs) based on electrolytes that contain Br(-)/Br(3)(-) and I(-)/I(3)(-). The effects of additive Li(+) ions and the HOMO levels of the dyes have an important influence on properties of the dyes and performance of DSCs. The addition of Li(+) ions in electrolytes can broaden the absorption spectra of the dyes on TiO(2) films and shift both the LUMO levels of the dyes and the conduction band of TiO(2), thus leading to the increase of J(sc) and the decrease of V(oc). Upon using Br(-)/Br(3)(-) instead of I(-)/I(3)(-), a large increase of V(oc) is attributed to the enlarged energy difference between the redox potentials of electrolyte and the Fermi level of TiO(2), as well as the suppressed electron recombination. Incident photon to current efficiency (IPCE) action spectra, electrochemical impedance spectra, and nanosecond laser transient absorption reveal that both the electron collection yields and the dye regeneration yields (Φ(r)) depend on the potential difference (the driving forces) between the oxidized dyes and the Br(-)/Br(3)(-) redox couple. For the dyes for which the HOMO levels are more positive than the redox potential of Br(-)/Br(3)(-) sufficient driving forces lead to the longer effective electron-diffusion lengths and almost the same efficient dye regenerations, whereas for the dyes for which the HOMO levels are similar to the redox potential of Br(-)/Br(3)(-), insufficient driving forces lead to shorter effective electron-diffusion lengths and inefficient dye regenerations.  相似文献   

4.
To measure electron diffusion coefficients (D) and electron lifetimes (tau) of dye-sensitized solar cells (DSC), we introduced stepped light-induced transient measurements of photocurrent and voltage (SLIM-PCV), which can simplify the optical setup and reduce measurement time in comparison to conventional time-of-flight and frequency-modulated measurements. The method was applied to investigate the influence of the viscosity of a thermally stable high-boiling-point solvent on the energy conversion efficiency of DSCs. By systematic study of the influence of the viscosity, the species of cations as the counter charge of I(-)/I(3)(-), and the concentrations of electrolytes, we concluded that a lower dye cation reduction rate due to slower iodine diffusion is a limiting factor for a highly viscous electrolyte system. On the other hand, comparable values of D and increased values of tau were observed in a highly viscous electrolyte. By employing 0.5 M TBAI and 0.05 M I(2) in propylene carbonate, the efficiency of the DSC became comparable to that of a DSC using conventional electrolytes consisting of LiI, imidazolium iodide, and 4-tert-butylpyridine in methoxyacetonitrile. The simultaneous evaluation of D and tau through the appropriately simple measurement realizes fast optimization of the efficient and reliable DSC composed of thermally stable but often viscous electrolytes.  相似文献   

5.
Addition of 4-tert-butylpyridine (4TBP) to redox electrolytes used in dye-sensitized TiO2 solar cells has a large effect on their performance. In an electrolyte containing 0.7 M LiI and 0.05 M I2 in 3-methoxypropionitrile, addition of 0.5 M 4TBP gave an increase of the open-circuit potential of 260 mV. Using charge extraction and electron lifetime measurements, this increases could be attributed to a shift of the TiO2 band edge toward negative potentials (responsible for 60% of the voltage increase) and to an increase of the electron lifetime (40%). At a lower 4TBP concentration the shift of the band edge was similar, but the effect on the electron lifetime was less pronounced. The working mechanism of 4TBP can be summarized as follows: (1) 4TBP affects the surface charge of TiO2 by decreasing the amount of adsorbed protons and/or Li+ ions. (2) It decreases the recombination of electrons in TiO2 with triiodide in the electrolyte by preventing triiodide access to the TiO2 surface and/or by complexation with iodine in the electrolyte.  相似文献   

6.
制备了高氯酸锂(LiClO4)与1,3-氮氧杂环-戊-2-酮(OZO)形成的二元熔盐电解质, 虽然先导物具有较高的熔点, 但二者可形成均一、稳定的共熔体系, 测试结果表明该熔盐体系具有低的共熔温度(-50 益). 红外光谱分析表明OZO 通过Li—O 键与LiClO4中Li+配位而破坏了LiClO4的离子键,形成很大的配位阳离子,削弱了阴阳离子间的库伦作用力; 同时Li—O 配位也导致OZO 分子间的氢键断裂, 因而体系的共熔温度较之纯物质熔点显著降低, 部分样品室温下以液体状态稳定存在. 采用交流阻抗法和循环伏安法对其电化学性质进行研究, 结果显示, 配比n(LiClO4):n(OZO)=1:4.5 的样品室温(25 ℃)电导率为0.66×10^-3 S·cm^-1, 80 ℃电导率为7.33×10^-3 S·cm^-1; 其电化学稳定电位窗口约为3.5 V.  相似文献   

7.
应用光谱电化学方法测定了纳米晶TiO2电极在不同浓度的4-叔丁基吡啶(TBP)电解液中的平带电势(Efb). TBP对纳米晶TiO2电极的能带结构具有显著的影响. 在不含和含有0.2或0.4 mol•L-1TBP的0.2 mol•L-1高氯酸四丁基铵(TBAP)/乙腈溶液中,测得TiO2电极的Efb依次为-2.25,-2.46和-2.60 V. 当加入Li+后,TiO2电极的Efb正移,在不含和含有0.2或0.4 mol•L-1TBP的0.2 mol•L-1 LiClO4/乙腈溶液中,测得TiO2电极的Efb依次为-1.12,-1.22和-1.30 V. 用时间分辨电流方法测定了陷阱态分布. 在不含和含有0.2或0.4 mol•L-1TBP的0.2 mol•L-1 TBAP/乙腈溶液中,TiO2电极的陷阱态密度依次为3.52 × 1016, 3.18 × 1016和3.37 × 1016 cm-2,陷阱态分布的最大值位于-1.99, -1.89和-1.85 V处. Li+的加入进一步减少了陷阱态密度. 在不含和含有0.2或0.4 mol•L-1TBP的0.2 mol•L-1 LiClO4/乙腈溶液中,TiO2电极的陷阱态密度依次为8.39 × 1015, 1.11 × 1016和9.22 × 1015 cm-2,陷阱态分布的最大值位于-0.72, -0.84和-0.95V处. 最后,研究了N3染料敏化的纳米晶TiO2电极在含有不同浓度TBP的电解质溶液中的光电化学性质. 结果显示,随着TBP浓度的增加,Voc增大,使TiO2电极的光电转化效率增加.  相似文献   

8.
The performance of dye-sensitized solar cells (DSCs) was compared before and after processing the TiO(2) electrodes by minute-order electrochemical reactions with metal nitrates, where the metals were Mg, Zn, Al, and La, in 2-propanol. An overcoating of metal hydroxide was formed without the need for a sintering process, and magnesium hydroxide was found to give the largest improvement in photovoltage, fill factor, and eventually overall conversion efficiency of the DSCs. To analyze the nature of the improvement, the diffusion coefficient (D) and electron lifetime (tau) were determined. While little influence of overcoating on D was seen, a correlation between the increase in tau and V(oc) was observed for the metals examined here. The remarkable improvement in the electron lifetime of the DSCs suggests that an overcoating with magnesium hydroxide species function as the blocking layers at the fluorine-doped tin oxide and TiO(2) interfaces, thus contributing to the suppression of electron leakage, i.e., recombination processes between unidirectional transporting electrons and poly-iodides such as tri-iodide in the processed TiO(2) photoelectrode systems. The increase in V(oc) can be explained by the increased electron density caused by the increase in electron lifetime.  相似文献   

9.
Dye-sensitized solar cells (DSCs) using solid-state hole conductor, poly(3,4-ethylenedioxythiophene) (PEDOT), were fabricated using in-situ photoelectrochemical polymerization giving short-circuit photocurrent density of 3.20 mA cm-2, open-circuit voltage of 0.77 V, and fill factor of 0.50, and the resulting overall conversion efficiency of 1.25% on average under air mass 1.5 conditions. Furthermore, the electron transport properties of the DSCs based on PEDOT (PEDOT/DSCs) were analyzed using light intensity modulation induced photocurrent and photovoltage decay (SLIM-PCV) measurements and electrochemical impedance spectroscopy (EIS) measurements, and then compared to those of the DSCs based on organic liquid electrolyte containing I-/I3- as redox couple (liquid iodide/iodine electrolyte-DSCs, iodide/DSCs for short). The effective filling of PEDOT in the mesopores of dyed TiO2 layers is an important key to achieve the respectable conversion efficiency of PEDOT/DSCs that is comparable with iodide/DSCs.  相似文献   

10.
Quantum chemical calculations were applied to investigate the electronic structure of mono-, di-, and tri- lithiated triatomic germanium (Ge3Lin) and their cations (n = 0-3). Computations using a multiconfigurational quasi-degenerate perturbation approach (MCQDPT2) based on complete active space CASSCF wavefunctions, MRMP2 and density functional theory reveal that Ge3Li has a 2A' ground state with a doublet-quartet gap of 24 kcal/mol. Ge3Li2 has a singlet ground state with a singlet-triplet (3A' '-1A1) gap of 30 kcal/mol, and Ge3Li3 a doublet ground state with a doublet-quartet (4A' '-2A') separation of 16 kcal/mol. The cation Ge3Li+ has a 1A' ground state, being 18 kcal/mol below the 3A' state. The computed electron affinities for triatomic germanium are EA(1) = 2.2 eV (experimental value is 2.23 eV), EA(2) = -2.5 eV, and EA(3) = -5.9 eV, for Ge3-, Ge32-, and Ge33-, respectively, indicating that only the monoanion is stable with respect to electron detachment, in such a way that Ge3Li is composed of Ge3-Li+ ions. An atoms in molecules (AIM) analysis shows the absence of a Ge-Ge-Li ring critical point in Ge3Li. An electron localization function (ELF) map of Ge3Li supports the view that the Ge-Li bond is predominantly ionic; however, a small covalent character could be anticipated from the Laplacian at the Ge-Li bond critical point. The ionic picture of the Ge-Li bond is further supported by the natural bond orbital (NBO) results. The calculated Li affinity value for Ge3 is 2.17 eV, and the Li+ cation affinity value for Ge3- amounts to 5.43 eV. The larger Li+ cation affinity of Ge3- favors an electron transfer, resulting in a Ge3-Li+ interaction.  相似文献   

11.
In this paper, the interface modification effects of 4-tertbutylpyridine (TBP), especially the interaction with dye molecules, were discussed. The results of FTIR showed that TBP interacted with dye molecules, in addition to its interaction with the TiO(2) film. Reaction between N3 and TBP by the interaction force of the H atom in the -COOH group of N3 and the N atom of TBP could retard the aggregation of dye molecules, decreasing the electron quenching and charge recombination. Furthermore, the results of cyclic voltammograms and UV-vis absorption edge revealed the interaction between TBP and dye molecules could cause the energy level of the dye molecules to change, influencing the electron injection efficiency in DSCs. The IPCE results indicated that with TBP modification, the injection efficiency decreased, but the electron collection efficiency was enhanced.  相似文献   

12.
Quantum chemical calculations were applied to investigate the electronic structure of mono-, di-, and trilithiated digermanium (Ge2Lin) and their cations (n=0-3). Computations using a multiconfigurational quasidegenerate perturbation approach based on complete active space self-consistent-field wave functions, and density functional theory reveal that Ge2Li has a 2B1 ground state with a doublet-quartet energy gap of 33 kcal/mol. Ge2Li2 has a singlet ground state with a 3Au-1A1 gap of 29 kcal/mol, and Ge2Li3 a doublet ground state with a 4B2-2A2 separation of 22 kcal/mol. The cation Ge2Li+ has a 3B1 ground state, being 13 kcal/mol below the open-shell 1B1 state. The computed electron affinities for diatomic germanium are EA(1)=1.9 eV, EA(2)=-2.5 eV, and EA(3)=-6.0 eV, for Ge2-, Ge2 (2-), and Ge2 (3-), respectively, indicating that only the monoanion is stable with respect to electron detachment, in such a way that Ge2Li is composed by Ge2-Li+ ions. An "atoms-in-molecules" analysis shows the absence of a ring critical point in Ge(2)Li. An electron localization function analysis on Ge2Li supports the view that the Ge-Li bond is predominantly ionic; however, a small covalent character could be anticipated from the analysis of the Laplacian at the Ge-Li bond critical point. The ionic picture of the Ge-Li bond is further supported by a natural-bond-order analysis and the Laplacian of the electron density. The calculated Li affinity value for Ge2 is 2.08 eV, while the Li+ cation affinity value for Ge2- is 5.7 eV. The larger Li+ cation affinity value of Ge2- suggests a Ge2-Li+ interaction and thus supports the ionic nature of Ge-Li bond. In GeLi4 and Ge2Li, the presence of trisynaptic basins indicates a three-center bond connecting the germanium and lithium atoms.  相似文献   

13.
ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells   总被引:1,自引:0,他引:1  
We describe the construction and performance of dye-sensitized solar cells (DSCs) based on arrays of ZnO nanowires coated with thin shells of amorphous Al(2)O(3) or anatase TiO(2) by atomic layer deposition. We find that alumina shells of all thicknesses act as insulating barriers that improve cell open-circuit voltage (V(OC)) only at the expense of a larger decrease in short-circuit current density (J(SC)). However, titania shells 10-25 nm in thickness cause a dramatic increase in V(OC) and fill factor with little current falloff, resulting in a substantial improvement in overall conversion efficiency, up to 2.25% under 100 mW cm(-2) AM 1.5 simulated sunlight. The superior performance of the ZnO-TiO(2) core-shell nanowire cells is a result of a radial surface field within each nanowire that decreases the rate of recombination in these devices. In a related set of experiments, we have found that TiO(2) blocking layers deposited underneath the nanowire films yield cells with reduced efficiency, in contrast to the beneficial use of blocking layers in some TiO(2) nanoparticle cells. Raising the efficiency of our nanowire DSCs above 2.5% depends on achieving higher dye loadings through an increase in nanowire array surface area.  相似文献   

14.
Multichromophoric dye-sensitized solar cells (DSCs) based on self-assembled zinc-porphyrinperyleneimide dyads on TiO(2) films display more efficient light-to-electrical energy conversion than DSCs based on individual dyes. Higher efficiency of multichromophoric dyes can be attributed to co-sensitization as well as vectorial electron transfer that lead to better electron-hole separation in the device.  相似文献   

15.
We compared the spectral (IR and Raman), electrochemical, and photoelectrochemical properties of nanocrystalline TiO(2) sensitized with the newly synthesized complex [NBu(4)](2)[cis-Ru(Hdcpq)(2)(NCS)(2)] (1; [NBu(4)](+) = tetrabutylammonium cation; H(2)dcpq = 4-carboxy-2-[2'-(4'-carboxypyridyl)]quinoline) with those of TiO(2) sensitized with [NBu(4)](2)[cis-Ru(Hdcbpy)(2)(NCS)(2)] (2; H(2)dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) and [NBu(4)](2)[cis-Ru(Hdcbiq)(2)(NCS)(2)] (3; H(2)dcbiq = 4,4'-dicarboxy-2,2'-biquinoline). Complex 1 achieved efficient sensitization of nanocrystalline TiO(2) films over a wide visible and near-IR region, generating a large short-circuit photocurrent. The absorbed photon-to-current conversion efficiency decreased in the order 2 > 1 > 3 with the decrease in the free energy change (-Delta G(inj)) of the electron injection from the ruthenium complex to TiO(2). The open-circuit photovoltages (V(oc)'s) of dye-sensitized solar cells decreased in the order 2 > 1 > 3 with the increase in the dark current resulting from reverse electron transfer from TiO(2) to I(3)(-). The sensitizer-dependent V(oc) value can be interpreted as a result of reverse electron transfer through the sensitizing dye molecules.  相似文献   

16.
Room temperature ionic liquids (RTILs) have been used as electrolytes to investigate the anionic structure dependence of the photoelectrochemical responses of dye-sensitized solar cells (DSCs). A series of RTILs with a fixed cation structure coupling with various anion structures are employed, in which 1-methyl-3-propylimidazolium iodide (PMII) and I(2) are dissolved as redox couples. It is found that both the diffusivity of the electrolyte and the photovoltaic performance of the device show a strong dependence on the fluidity of the ionic liquids, which is primarily altered by the anion structure. Further insights into the structure-dependent physical properties of the employed RTILs are discussed in terms of the reported van der Waals radius, the atomic charge distribution over the anion backbones, the interaction energy of the anion and cation, together with the existence of ion-pairs and ion aggregates. Particularly, both the short-circuit photocurrent and open-circuit voltage exhibit obvious fluidity dependence. Electrochemical impedance and intensity-modulated photovoltage/photocurrent spectroscopy analysis further reveal that increasing the fluidity of the ionic liquid electrolytes could significantly decrease the diffusion resistance of I(3)(-) in the electrolyte, and retard the charge recombination between the injected electrons with triiodide in the high-viscous electrolyte, thus improving the electron diffusion length in the device, as well as the photovoltaic response. However, the variation of the electron diffusion coefficients is trivial primarily due to the effective charge screening of the high cation concentration.  相似文献   

17.
Replacing the nonyl groups on the solar cell dye Ru(4,4'-carboxylic acid-2,2'-bipyridine)(4,4'-dinonyl-2,2'-bipyridine)(NCS)(2) (Z-907) with amino groups results in a marked decrease in solar cell performance. This is despite the fact that the amino derivative (Z-960) has more favourable light absorption characteristics than Z-907 when used with thick nanocrystalline TiO(2) layers. Electron transfer to the electrolyte from the exposed fluorine-doped tin oxide (FTO) substrate is particularly fast in cells employing the Z-960 dye if a compact TiO(2) blocking layer is not used. The kinetics of electron transfer from the nanocrystalline TiO(2) layer in DSCs employing Z-960 are comparable to those of bare TiO(2) and ca. 2 to 5 times faster than for cells employing Z-907. The faster charge recombination in cells employing Z-960 lowers open-circuit photovoltage and results in very significant charge collection losses that lower short-circuit photocurrent. Voltammetric measurements show that surface modification of FTO electrodes with Z-960 results in slightly more facile charge transfer to acceptor species in triiodide/iodide electrolytes in the dark. A simpler molecule, p-aminobenzoic acid, more dramatically catalyses this charge transfer reaction. Conversely, chemical modification of FTO electrodes with Z-907 or p-toluic acid retards charge transfer kinetics. Similar results are obtained for nanocrystalline TiO(2) electrodes modified with these benzoic acid derivatives. These results strongly imply that surface adsorbed molecules bearing amino groups, including dye molecules, can catalyse charge recombination in dye-sensitized solar cells.  相似文献   

18.
In research on alternative photoanode materials for dye-sensitized solar cells (DSCs), there is rarely any report on WO(3), probably due to its acidic surface and more positive (vs NHE) conduction band edge position compared to TiO(2) and ZnO. For the first time, dye-sensitized solar cells based on porous WO(3) nanoparticle films were successfully fabricated with efficiency of up to 0.75%. The multicrystalline structure of WO(3) was examined by Raman spectroscopy and X-ray diffraction analysis. It was found that significant performance enhancement can be obtained from treating the WO(3) nanoparticle film with TiCl(4); the TiCl(4)-treated WO(3) DSCs were recorded with efficiency reaching 1.46%.  相似文献   

19.
A major loss mechanism in dye-sensitized solar cells (DSCs) is recombination at the TiO(2)/electrolyte interface. Here we report a method to reduce greatly this loss mechanism. We deposit insulating and transparent silica (SiO(2)) onto the open areas of a nanoparticulate TiO(2) surface while avoiding any deposition of SiO(2) over or under the organic dye molecules. The SiO(2) coating covers the highly convoluted surface of the TiO(2) conformally and with a uniform thickness throughout the thousands of layers of nanoparticles. DSCs incorporating these selective and self-aligned SiO(2) layers achieved a 36% increase in relative efficiency versus control uncoated cells.  相似文献   

20.
The adsorption of lithium atoms on rutile TiO2(110) single crystals was studied with metastable‐induced electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy (UPS(HeI)) between 130 K and room temperature. Some auxiliary measurements on W(110) required for data interpretation are also reported. At 130 K ionic adsorption at titania prevails up to 0.3 monolayer equivalents (MLE) as judged from the weak Li(2s) emission in MIES for these exposures. The reduction of the Ti4+ cation is manifested by the growth of an occupied bandgap state in UPS: the alkali s‐electron is transferred to a near‐surface cation, thereby reducing it to Ti3+ 3d. The transfer of the s‐electron is responsible for the observed work function decrease up to ~0.5 MLE coverage. From the analysis of the UPS Ti3+ 3d signal, as well as from the Li(2s) emission, it is concluded that the degree of ionicity of the adsorbed Li decreases from 100% at 0.3 MLE to 40% at 0.7 MLE. Above 0.5 MLE the MIES spectra are dominated by an Li(2s)‐induced peak indicating the presence of Li with an at least partially filled 2s orbital. At temperatures above 160 K this peak is almost absent. Excluding Li desorption at these temperatures, we suggest that Li moves into or below the rutile TiO2(110) surface above 160 K. Lithium insertion into the surface and intercalation are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号