首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical reduction of carbon dioxide (CO2) into value‐added chemicals is a promising strategy to reduce CO2 emission and mitigate climate change. One of the most serious problems in electrocatalytic CO2 reduction (CO2R) is the low solubility of CO2 in an aqueous electrolyte, which significantly limits the cathodic reaction rate. This paper proposes a facile method of catholyte‐free electrocatalytic CO2 reduction to avoid the solubility limitation using commercial tin nanoparticles as a cathode catalyst. Interestingly, as the reaction temperature rises from 303 K to 363 K, the partial current density (PCD) of formate improves more than two times with 52.9 mA cm?2, despite the decrease in CO2 solubility. Furthermore, a significantly high formate concentration of 41.5 g L?1 is obtained as a one‐path product at 343 K with high PCD (51.7 mA cm?2) and high Faradaic efficiency (93.3 %) via continuous operation in a full flow cell at a low cell voltage of 2.2 V.  相似文献   

2.
The reaction of precursors containing both nitrogen and oxygen atoms with NiII under 500 °C can generate a N/O mixing coordinated Ni‐N3O single‐atom catalyst (SAC) in which the oxygen atom can be gradually removed under high temperature due to the weaker Ni?O interaction, resulting in a vacancy‐defect Ni‐N3‐V SAC at Ni site under 800 °C. For the reaction of NiII with the precursor simply containing nitrogen atoms, only a no‐vacancy‐defect Ni‐N4 SAC was obtained. Experimental and DFT calculations reveal that the presence of a vacancy‐defect in Ni‐N3‐V SAC can dramatically boost the electrocatalytic activity for CO2 reduction, with extremely high CO2 reduction current density of 65 mA cm?2 and high Faradaic efficiency over 90 % at ?0.9 V vs. RHE, as well as a record high turnover frequency of 1.35×105 h?1, much higher than those of Ni‐N4 SAC, and being one of the best reported electrocatalysts for CO2‐to‐CO conversion to date.  相似文献   

3.
The electrochemical CO2 reduction reaction (CO2RR) to give C1 (formate and CO) products is one of the most techno‐economically achievable strategies for alleviating CO2 emissions. Now, it is demonstrated that the SnOx shell in Sn2.7Cu catalyst with a hierarchical Sn‐Cu core can be reconstructed in situ under cathodic potentials of CO2RR. The resulting Sn2.7Cu catalyst achieves a high current density of 406.7±14.4 mA cm?2 with C1 Faradaic efficiency of 98.0±0.9 % at ?0.70 V vs. RHE, and remains stable at 243.1±19.2 mA cm?2 with a C1 Faradaic efficiency of 99.0±0.5 % for 40 h at ?0.55 V vs. RHE. DFT calculations indicate that the reconstructed Sn/SnOx interface facilitates formic acid production by optimizing binding of the reaction intermediate HCOO* while promotes Faradaic efficiency of C1 products by suppressing the competitive hydrogen evolution reaction, resulting in high Faradaic efficiency, current density, and stability of CO2RR at low overpotentials.  相似文献   

4.
Developing new materials for the fabrication of proton exchange membranes (PEMs) for fuel cells is of great significance. Herein, a series of highly crystalline, porous, and stable new covalent organic frameworks (COFs) have been developed by a stepwise synthesis strategy. The synthesized COFs exhibit high hydrophilicity and excellent stability in strong acid or base (e.g., 12 m NaOH or HCl) and boiling water. These features make them ideal platforms for proton conduction applications. Upon loading with H3PO4, the COFs (H3PO4@COFs) realize an ultrahigh proton conductivity of 1.13×10?1 S cm?1, the highest among all COF materials, and maintain high proton conductivity across a wide relative humidity (40–100 %) and temperature range (20–80 °C). Furthermore, membrane electrode assemblies were fabricated using H3PO4@COFs as the solid electrolyte membrane for proton exchange resulting in a maximum power density of 81 mW cm?2 and a maximum current density of 456 mA cm?2, which exceeds all previously reported COF materials.  相似文献   

5.
The electrocatalytic CO2 reduction reaction (CO2RR) can dynamise the carbon cycle by lowering anthropogenic CO2 emissions and sustainably producing valuable fuels and chemical feedstocks. Methanol is arguably the most desirable C1 product of CO2RR, although it typically forms in negligible amounts. In our search for efficient methanol‐producing CO2RR catalysts, we have engineered Ag‐Zn catalysts by pulse‐depositing Zn dendrites onto Ag foams (PD‐Zn/Ag foam). By themselves, Zn and Ag cannot effectively reduce CO2 to CH3OH, while their alloys produce CH3OH with Faradaic efficiencies of approximately 1 %. Interestingly, with nanostructuring PD‐Zn/Ag foam reduces CO2 to CH3OH with Faradaic efficiency and current density values reaching as high as 10.5 % and ?2.7 mA cm?2, respectively. Control experiments and DFT calculations pinpoint strained undercoordinated Zn atoms as the active sites for CO2RR to CH3OH in a reaction pathway mediated by adsorbed CO and formaldehyde. Surprisingly, the stability of the *CHO intermediate does not influence the activity.  相似文献   

6.
Associating a metal‐based catalyst to a carbon‐based nanomaterial is a promising approach for the production of solar fuels from CO2. Upon appending a CoII quaterpyridine complex [Co(qpy)]2+ at the surface of multi‐walled carbon nanotubes, CO2 conversion into CO was realized in water at pH 7.3 with 100 % catalytic selectivity and 100 % Faradaic efficiency, at low catalyst loading and reduced overpotential. A current density of 0.94 mA cm?2 was reached at ?0.35 V vs. RHE (240 mV overpotential), and 9.3 mA cm?2 could be sustained for hours at only 340 mV overpotential with excellent catalyst stability (89 095 catalytic cycles in 4.5 h), while 19.9 mA cm?2 was met at 440 mV overpotential. Such a hybrid material combines the high selectivity of a homogeneous molecular catalyst to the robustness of a heterogeneous material. Catalytic performances compare well with those of noble‐metal‐based nano‐electrocatalysts and atomically dispersed metal atoms in carbon matrices.  相似文献   

7.
Electrocatalytic reduction of CO2 is a promising route for energy storage and utilization. Herein we synthesized SnO2 nanosheets and supported them on N-doped porous carbon (N-PC) by electrodeposition for the first time. The SnO2 and N-PC in the SnO2@N-PC composites had exellent synergistic effect for electrocatalytic reduction of CO2 to HCOOH. The Faradaic efficiency of HCOOH could be as high as 94.1% with a current density of 28.4 mA cm?2 in ionic liquid-MeCN system. The reaction mechanism was proposed on the basis of some control experiments. This work opens a new way to prepare composite electrode for electrochemical reduction of CO2.  相似文献   

8.
The development of durable, low‐cost, and efficient photo‐/electrolysis for the oxygen and hydrogen evolution reactions (OER and HER) is important to fulfill increasing energy requirements. Herein, highly efficient and active photo‐/electrochemical catalysts, that is, CoMn‐LDH@g‐C3N4 hybrids, have been synthesized successfully through a facile in situ co‐precipitation method at room temperature. The CoMn‐LDH@g‐C3N4 composite exhibits an obvious OER electrocatalytic performance with a current density of 40 mA cm?2 at an overpotential of 350 mV for water oxidation, which is 2.5 times higher than pure CoMn‐LDH nanosheets. For HER, CoMn‐LDH@g‐C3N4 (η50=?448 mV) requires a potential close to Pt/C (η50=?416 mV) to reach a current density of 50 mA cm2. Furthermore, under visible‐light irradiation, the photocurrent density of the CoMn‐LDH@g‐C3N4 composite is 0.227 mA cm?2, which is 2.1 and 3.8 time higher than pristine CoMn‐LDH (0.108 mA cm?2) and g‐C3N4 (0.061 mA cm?2), respectively. The CoMn‐LDH@g‐C3N4 composite delivers a current density of 10 mA cm?2 at 1.56 V and 100 mA cm?2 at 1.82 V for the overall water‐splitting reaction. Therefore, this work establishes the first example of pure CoMn‐LDH and CoMn‐LDH@g‐C3N4 hybrids as electrochemical and photoelectrochemical water‐splitting systems for both OER and HER, which may open a pathway to develop and explore other LDH and g‐C3N4 nanosheets as efficient catalysts for renewable energy applications.  相似文献   

9.
Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s−1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s−1). This work paves the way for the development of COFs with low dimensions for electrocatalysis.  相似文献   

10.
Syngas (CO/H2) is a feedstock for the production of a variety of valuable chemicals and liquid fuels, and CO2 electrochemical reduction to syngas is very promising. However, the production of syngas with high efficiency is difficult. Herein, we show that defective indium selenide synthesized by an electrosynthesis method on carbon paper (γ‐In2Se3/CP) is an extremely efficient electrocatalyst for this reaction. CO and H2 were the only products and the CO/H2 ratio could be tuned in a wide range by changing the applied potential or the composition of the electrolyte. In particular, using nanoflower‐like γ‐In2Se3/CP (F‐γ‐In2Se3/CP) as the electrode, the current density could be as high as 90.1 mA cm?2 at a CO/H2 ratio of 1:1. In addition, the Faradaic efficiency of CO could reach 96.5 % with a current density of 55.3 mA cm?2 at a very low overpotential of 220 mV. The outstanding electrocatalytic performance of F‐γ‐In2Se3/CP can be attributed to its defect‐rich 3D structure and good contact with the CP substrate.  相似文献   

11.
Single‐atom catalysts (SACs) show great promise for electrochemical CO2 reduction reaction (CRR), but the low density of active sites and the poor electrical conduction and mass transport of the single‐atom electrode greatly limit their performance. Herein, we prepared a nickel single‐atom electrode consisting of isolated, high‐density and low‐valent nickel(I) sites anchored on a self‐standing N‐doped carbon nanotube array with nickel–copper alloy encapsulation on a carbon‐fiber paper. The combination of single‐atom nickel(I) sites and self‐standing array structure gives rise to an excellent electrocatalytic CO2 reduction performance. The introduction of copper tunes the d‐band electron configuration and enhances the adsorption of hydrogen, which impedes the hydrogen evolution reaction. The single‐nickel‐atom electrode exhibits a specific current density of ?32.87 mA cm?2 and turnover frequency of 1962 h?1 at a mild overpotential of 620 mV for CO formation with 97 % Faradic efficiency.  相似文献   

12.
Water splitting has attracted more and more attention as a promising strategy for the production of clean hydrogen fuel. In this work, a new synthesis strategy was proposed, and Co0.85Se was synthesized on nickel foam as the main matrix. The doping of appropriate Cr amount into the target of Co0.85Se and the Cr‐Co0.85Se resulted in an excellent electrochemical performance. The doping of Cr introduces Cr3+ ions which substitute Co2+ and Co3+ ions in Co0.85Se, so that the lattice parameters of the main matrix were changed. It is worth noting that the Cr0.15‐Co0.85Se/NF material exhibits an excellent performance in the oxygen evolution reaction (OER) test. When the current density reaches 50 mA cm?2 for OER, the overpotential is only 240 mV. For the hydrogen evolution reaction (HER) tests, the overpotential is only 117 mV to drive 10 mA cm?2 of current density. Moreover, when the Cr0.15‐Co0.85Se/NF material is used as a two‐electrode device for whole water splitting, the required cell voltage is only 1.43 V to reach a current density of 10 mA cm?2, which is among the lowest values of the published catalysts up to now. In addition, the Cr0.15‐Co0.85Se/NF catalyst also exhibits excellent stability during a long period of water splitting. The experimental result demonstrates that the change of the lattice structure has an obvious influence on the electrocatalytic activity of the material. When an external electric field is applied, it facilitates the rapid electron transfer rate and enhances the electrocatalytic performance and stability of the material.  相似文献   

13.
The electrocatalytic urea oxidation reaction (UOR) provides more economic electrons than water oxidation for various renewable energy‐related systems owing to its lower thermodynamic barriers. However, it is limited by sluggish reaction kinetics, especially by CO2 desorption steps, masking its energetic advantage compared with water oxidation. Now, a lattice‐oxygen‐involved UOR mechanism on Ni4+ active sites is reported that has significantly faster reaction kinetics than the conventional UOR mechanisms. Combined DFT, 18O isotope‐labeling mass spectrometry, and in situ IR spectroscopy show that lattice oxygen is directly involved in transforming *CO to CO2 and accelerating the UOR rate. The resultant Ni4+ catalyst on a glassy carbon electrode exhibits a high current density (264 mA cm?2 at 1.6 V versus RHE), outperforming the state‐of‐the‐art catalysts, and the turnover frequency of Ni4+ active sites towards UOR is 5 times higher than that of Ni3+ active sites.  相似文献   

14.
To apply electrically nonconductive metal–organic frameworks (MOFs) in an electrocatalytic oxygen reduction reaction (ORR), we have developed a new method for fabricating various amounts of CuS nanoparticles (nano‐CuS) in/on a 3D Cu–MOF, [Cu3(BTC)2?(H2O)3] (BTC=1,3,5‐benzenetricarboxylate). As the amount of nano‐CuS increases in the composite, the electrical conductivity increases exponentially by up to circa 109‐fold, while porosity decreases, compared with that of the pristine Cu‐MOF. The composites, nano‐CuS(x wt %)@Cu‐BTC, exhibit significantly higher electrocatalytic ORR activities than Cu‐BTC or nano‐CuS in an alkaline solution. The onset potential, electron transfer number, and kinetic current density increase when the electrical conductivity of the material increases but decrease when the material has a poor porosity, which shows that the two factors should be finely tuned by the amount of nano‐CuS for ORR application. Of these materials, CuS(28 wt %)@Cu‐BTC exhibits the best activity, showing the onset potential of 0.91 V vs. RHE, quasi‐four‐electron transfer pathway, and a kinetic current density of 11.3 mA cm?2 at 0.55 V vs. RHE.  相似文献   

15.
Metal–organic frameworks (MOFs) and MOF‐derived nanomaterials have recently attracted great interest as highly efficient, non‐noble‐metal catalysts. In particular, two‐dimensional MOF nanosheet materials possess the advantages of both 2D layered nanomaterials and MOFs and are considered to be promising nanomaterials. Herein, we report a facile and scalable in situ hydrothermal synthesis of Co–hypoxanthine (HPA) MOF nanosheets, which were then directly carbonized to prepare uniform Co@N‐Carbon nanosheets for efficient bifunctional electrocatalytic hydrogen‐evolution reactions (HERs) and oxygen‐evolution reactions (OERs). The Co embedded in N‐doped carbon shows excellent and stable catalytic performance for bifunctional electrocatalytic OERs and HERs. For OERs, the overpotential of Co@N‐Carbon at 10 mA cm?2 was 400 mV (vs. reversible hydrogen electrode, RHE). The current density of Co@N‐Carbon reached 100 mA cm?2 at an overpotential of 560 mV, which showed much better performance than RuO2; the largest current density of RuO2 that could be reached was only 44 mA cm?2. The Tafel slope of Co@N‐Carbon was 61 mV dec?1, which is comparable to that of commercial RuO2 (58 mV dec?1). The excellent electrocatalytic properties can be attributed to the nanosheet structure and well‐dispersed carbon‐encapsulated Co, CoN nanoparticles, and N‐dopant sites, which provided high conductivity and a large number of accessible active sites. The results highlight the great potential of utilizing MOF nanosheet materials as promising templates for the preparation of 2D Co@N‐Carbon materials for electrocatalysis and will pave the way to the development of more efficient 2D nanomaterials for various catalytic applications.  相似文献   

16.
Two-dimensional (2D) materials catalysts provide an atomic-scale view on a fascinating arena for understanding the mechanism of electrocatalytic carbon dioxide reduction (CO2 ECR). Here, we successfully exfoliated both layered and nonlayered ultra-thin metal phosphorous trichalcogenides (MPCh3) nanosheets via wet grinding exfoliation (WGE), and systematically investigated the mechanism of MPCh3 as catalysts for CO2 ECR. Unlike the layered CoPS3 and NiPS3 nanosheets, the active Sn atoms tend to be exposed on the surfaces of nonlayered SnPS3 nanosheets. Correspondingly, the nonlayered SnPS3 nanosheets exhibit clearly improved catalytic activity, showing formic acid selectivity up to 31.6 % with −7.51 mA cm−2 at −0.65 V vs. RHE. The enhanced catalytic performance can be attributed to the formation of HCOO* via the first proton-electron pair addition on the SnPS3 surface. These results provide a new avenue to understand the novel CO2 ECR mechanism of Sn-based and MPCh3-based catalysts.  相似文献   

17.
The ability to capture, store, and use CO2 is important for remediating greenhouse‐gas emissions and combatting global warming. Herein, Au nanoparticles (Au‐NPs) are synthesized for effective electrochemical CO2 reduction and syngas production, using polyethylenimine (PEI) as a ligand molecule. The PEI‐assisted synthesis provides uniformly sized 3‐nm Au NPs, whereas larger irregularly shaped NPs are formed in the absence of PEI in the synthesis solution. The Au‐NPs synthesized with PEI (PEI?Au/C, average PEI Mw=2000) exhibit improved CO2 reduction activities compared to Au‐NPs formed in the absence of PEI (bare Au NPs/C). PEI?Au/C displays a 34 % higher activity toward CO2 reduction than bare Au NPs/C; for example, PEI?Au/C exhibits a CO partial current density (jCO) of 28.6 mA cm?2 at ?1.13 VRHE, while the value for bare Au NPs/C is 21.7 mA cm?2; the enhanced jCO is mainly due to the larger surface area of PEI?Au/C. Furthermore, the PEI?Au/C electrode exhibits stable performance over 64 h, with an hourly current degradation rate of 0.25 %. The developed PEI?Au/C is employed in a CO2‐reduction device coupled with an IrO2 water‐oxidation catalyst and a proton‐conducting perfluorinated membrane to form a PEI?Au/C|Nafion|IrO2 membrane‐electrode assembly. The device using PEI?Au/C as the CO2‐reduction catalyst exhibits a jCO of 4.47 mA/cm2 at 2.0 Vcell. Importantly, the resulted PEI?Au/C is appropriate for efficient syngas production with a CO ratio of around 30–50 %.  相似文献   

18.
The development of new promising metal‐free catalysts is of great significance for the electrocatalytic hydrogen evolution reaction (HER). Herein, a rationally assembled three‐dimensional (3D) architecture of 1D graphitic carbon nitride (g‐C3N4) nanoribbons with 2D graphene sheets has been developed by a one‐step hydrothermal method. Because of the multipathway of charge and mass transport, the hierarchically structured g‐C3N4 nanoribbon–graphene hybrids lead to a high electrocatalytic ability for HER with a Tafel slope of 54 mV decade?1, a low onset overpotential of 80 mV and overpotential of 207 mV to approach a current of 10 mA cm?2, superior to those non‐metal materials and well‐developed metallic catalysts reported previously. This work presents a great advance for designing and developing highly efficient metal‐free catalyst for hydrogen evolution.  相似文献   

19.
Efficient and durable nonprecious metal electrocatalysts for the oxygen reduction (ORR) are highly desirable for several electrochemical devices, including anion exchange membrane fuel cells (AEMFCs). Here, a 2D planar electrocatalyst with CoOx embedded in nitrogen‐doped graphitic carbon (N‐C‐CoOx) was created through the direct pyrolysis of a metal–organic complex with a NaCl template. The N‐C‐CoOx catalyst showed high ORR activity, indicated by excellent half‐wave (0.84 V vs. RHE) and onset (1.01 V vs. RHE) potentials. This high intrinsic activity was also observed in operating AEMFCs where the kinetic current was 100 mA cm?2 at 0.85 V. When paired with a radiation‐grafted ETFE powder ionomer, the N‐C‐CoOx AEMFC cathode was able to achieve extremely high peak power density (1.05 W cm?2) and mass transport limited current (3 A cm?2) for a precious metal free electrode. The N‐C‐CoOx cathode also showed good stability over 100 hours of operation with a voltage decay of only 15 % at 600 mA cm?2 under H2/air (CO2‐free) reacting gas feeds. The N‐C‐CoOx cathode catalyst was also paired with a very low loading PtRu/C anode catalyst, to create AEMFCs with a total PGM loading of only 0.10 mgPt‐Ru cm?2 capable of achieving 7.4 W mg?1PGM as well as supporting a current of 0.7 A cm?2 at 0.6 V with H2/air (CO2 free)—creating a cell that was able to meet the 2019 U.S. Department of Energy initial performance target of 0.6 V at 0.6 A cm?2 under H2/air with a PGM loading <0.125 mg cm?2 with AEMFCs for the first time.  相似文献   

20.
Herein, we report the controlled and direct fabrication of Cu2O/CuO thin film on the conductive nickel foam using electrodeposition route for the electrochemical reduction of carbon dioxide (CO2) to methanol. The electrocatalytic reduction was performed in CO2 saturated aqueous solution consisting of KHCO3, pyridine and HCl at room temperature. CO2 reduction was carried out at a constant potential of −1.3 V for 120 min to study the electrochemical performance of the prepared electrocatalysts. Cu2O/CuO shows better electrocatalytic activity with highest current density of 46 mA/cm2. The prepared catalyst can be an efficient and selective electrode for the production of methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号