首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Single-atom catalysts (SACs) show great promise for electrochemical CO2 reduction reaction (CRR), but the low density of active sites and the poor electrical conduction and mass transport of the single-atom electrode greatly limit their performance. Herein, we prepared a nickel single-atom electrode consisting of isolated, high-density and low-valent nickel(I) sites anchored on a self-standing N-doped carbon nanotube array with nickel–copper alloy encapsulation on a carbon-fiber paper. The combination of single-atom nickel(I) sites and self-standing array structure gives rise to an excellent electrocatalytic CO2 reduction performance. The introduction of copper tunes the d-band electron configuration and enhances the adsorption of hydrogen, which impedes the hydrogen evolution reaction. The single-nickel-atom electrode exhibits a specific current density of −32.87 mA cm−2 and turnover frequency of 1962 h−1 at a mild overpotential of 620 mV for CO formation with 97 % Faradic efficiency.  相似文献   

2.
The single copper atom doped clusters CuAl4O7–9? can catalyze CO oxidation by O2. The CuAl4O7–9? clusters are the first group of experimentally identified noble‐metal free single atom catalysts for such a prototypical reaction. The reactions were characterized by mass spectrometry and density functional theory calculations. The CuAl4O9CO? is much more reactive than CuAl4O9? in the reaction with CO to generate CO2. One adsorbed CO is crucial to stabilize Cu of CuAl4O9? around +I oxidation state and promote the oxidation of another CO. The widely emphasized correlation between the catalytic reactivity of CO oxidation and Cu oxidation state can be understood at the strictly molecular level. The remarkable difference between Cu catalysis and noble‐metal catalysis was discussed.  相似文献   

3.
Single‐atom catalysts have demonstrated their superiority over other types of catalysts for various reactions. However, the reported nitrogen reduction reaction single‐atom electrocatalysts for the nitrogen reduction reaction exclusively utilize metal–nitrogen or metal–carbon coordination configurations as catalytic active sites. Here, we report a Fe single‐atom electrocatalyst supported on low‐cost, nitrogen‐free lignocellulose‐derived carbon. The extended X‐ray absorption fine structure spectra confirm that Fe atoms are anchored to the support via the Fe‐(O‐C2)4 coordination configuration. Density functional theory calculations identify Fe‐(O‐C2)4 as the active site for the nitrogen reduction reaction. An electrode consisting of the electrocatalyst loaded on carbon cloth can afford a NH3 yield rate and faradaic efficiency of 32.1 μg h?1 mgcat.?1 (5350 μg h?1 mgFe?1) and 29.3 %, respectively. An exceptional NH3 yield rate of 307.7 μg h?1 mgcat.?1 (51 283 μg h?1 mgFe?1) with a near record faradaic efficiency of 51.0 % can be achieved with the electrocatalyst immobilized on a glassy carbon electrode.  相似文献   

4.
An artificial photosynthetic (APS) system consisting of a photoanodic semiconductor that harvests solar photons to split H2O, a Ni‐SNG cathodic catalyst for the dark reaction of CO2 reduction in a CO2‐saturated NaHCO3 solution, and a proton‐conducting membrane enabled syngas production from CO2 and H2O with solar‐to‐syngas energy‐conversion efficiency of up to 13.6 %. The syngas CO/H2 ratio was tunable between 1:2 and 5:1. Integration of the APS system with photovoltaic cells led to an impressive overall quantum efficiency of 6.29 % for syngas production. The largest turnover frequency of 529.5 h?1 was recorded with a photoanodic N‐TiO2 nanorod array for highly stable CO production. The CO‐evolution rate reached a maximum of 154.9 mmol g?1 h?1 in the dark compartment of the APS cell. Scanning electrochemical–atomic force microscopy showed the localization of electrons on the single‐nickel‐atom sites of the Ni‐SNG catalyst, thus confirming that the multielectron reduction of CO2 to CO was kinetically favored.  相似文献   

5.
An artificial photosynthetic (APS) system consisting of a photoanodic semiconductor that harvests solar photons to split H2O, a Ni‐SNG cathodic catalyst for the dark reaction of CO2 reduction in a CO2‐saturated NaHCO3 solution, and a proton‐conducting membrane enabled syngas production from CO2 and H2O with solar‐to‐syngas energy‐conversion efficiency of up to 13.6 %. The syngas CO/H2 ratio was tunable between 1:2 and 5:1. Integration of the APS system with photovoltaic cells led to an impressive overall quantum efficiency of 6.29 % for syngas production. The largest turnover frequency of 529.5 h?1 was recorded with a photoanodic N‐TiO2 nanorod array for highly stable CO production. The CO‐evolution rate reached a maximum of 154.9 mmol g?1 h?1 in the dark compartment of the APS cell. Scanning electrochemical–atomic force microscopy showed the localization of electrons on the single‐nickel‐atom sites of the Ni‐SNG catalyst, thus confirming that the multielectron reduction of CO2 to CO was kinetically favored.  相似文献   

6.
Electrocatalytic reduction of CO2 to a single product at high current densities and efficiencies remains a challenge. However, the conventional electrode preparation methods, such as drop‐casting, usually suffer from low intrinsic activity. Herein, we report a synthesis strategy for preparing heterogeneous electrocatalyst composed of 3D hierarchical Cu dendrites that derived from an in situ electrosynthesized hollow copper metal–organic framework (MOF), for which the preparation of the Cu‐MOF film took only 5 min. The synthesis strategy preferentially exposes active sites, which favor's the reduction of CO2 to formate. The current density could be as high as 102.1 mA cm?2 with a selectivity of 98.2 % in ionic‐liquid‐based electrolyte and a commonly used H‐type cell.  相似文献   

7.
Designing effective electrocatalysts for the carbon dioxide reduction reaction (CO2RR) is an appealing approach to tackling the challenges posed by rising CO2 levels and realizing a closed carbon cycle. However, fundamental understanding of the complicated CO2RR mechanism in CO2 electrocatalysis is still lacking because model systems are limited. We have designed a model nickel single‐atom catalyst (Ni SAC) with a uniform structure and well‐defined Ni‐N4 moiety on a conductive carbon support with which to explore the electrochemical CO2RR. Operando X‐ray absorption near‐edge structure spectroscopy, Raman spectroscopy, and near‐ambient X‐ray photoelectron spectroscopy, revealed that Ni+ in the Ni SAC was highly active for CO2 activation, and functioned as an authentic catalytically active site for the CO2RR. Furthermore, through combination with a kinetics study, the rate‐determining step of the CO2RR was determined to be *CO2?+H+→*COOH. This study tackles the four challenges faced by the CO2RR; namely, activity, selectivity, stability, and dynamics.  相似文献   

8.
A novel modified carbon ceramic electrode using CuI as modifier was fabricated. The copper iodide modified sol‐gel derived carbon ceramic (CIM‐SGD‐CC) electrode has high catalytic ability for electrooxidation of hydrogen peroxide. The charge transfer coefficient (α) and exchange current density (j0) for the modified electrode were calculated. It has been shown that using the CIM‐SGD‐CC electrode, hydrogen peroxide can be determined by cyclic voltammetry and amperometry with limit of detections 26 and 0.31 μmol L?1, respectively. The advantages of the modified CCE are its good stability and reproducibility of surface renewal by simple polishing, excellent catalytic activity.  相似文献   

9.
A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.? or other intermediates, which often requires precious‐metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition‐metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm?2 with 95.5±4.0 % CO Faraday efficiency at ?1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high‐curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali‐metal cations resulting in the enhanced CO2 electroreduction efficiency.  相似文献   

10.
Maximizing the platinum utilization in electrocatalysts toward oxygen reduction reaction (ORR) is very desirable for large‐scale sustainable application of Pt in energy systems. A cost‐effective carbon‐supported carbon‐defect‐anchored platinum single‐atom electrocatalysts (Pt1/C) with remarkable ORR performance is reported. An acidic H2/O2 single cell with Pt1/C as cathode delivers a maximum power density of 520 mW cm?2 at 80 °C, corresponding to a superhigh platinum utilization of 0.09 gPt kW?1. Further physical characterization and density functional theory computations reveal that single Pt atoms anchored stably by four carbon atoms in carbon divacancies (Pt‐C4) are the main active centers for the observed high ORR performance.  相似文献   

11.
The electrocatalytic urea oxidation reaction (UOR) provides more economic electrons than water oxidation for various renewable energy‐related systems owing to its lower thermodynamic barriers. However, it is limited by sluggish reaction kinetics, especially by CO2 desorption steps, masking its energetic advantage compared with water oxidation. Now, a lattice‐oxygen‐involved UOR mechanism on Ni4+ active sites is reported that has significantly faster reaction kinetics than the conventional UOR mechanisms. Combined DFT, 18O isotope‐labeling mass spectrometry, and in situ IR spectroscopy show that lattice oxygen is directly involved in transforming *CO to CO2 and accelerating the UOR rate. The resultant Ni4+ catalyst on a glassy carbon electrode exhibits a high current density (264 mA cm?2 at 1.6 V versus RHE), outperforming the state‐of‐the‐art catalysts, and the turnover frequency of Ni4+ active sites towards UOR is 5 times higher than that of Ni3+ active sites.  相似文献   

12.
A facile design and fabrication of self‐standing metal‐free polyaniline (PANI)@carbon nanotubes (CNTs) composite membrane was initially proposed by straightforward noncovalent wrapping the polymer around pure CNTs. Without introduction of extra heteroatoms into CNTs, the optimized PANI@CNTs composite exhibits a much better electrocatalytic performance for oxygen evolution reaction (OER) than pure CNTs via favorable interfacial modification with PANI to largely expose the active sites of on the surface of pure CNTs. Besides, it displays good oxygen reduction reaction (ORR) performance. When directly utilized as bifunctional air electrode without extra additive agents, the composite membrane‐enabled rechargeable Zn‐air batteries not only deliver a high peak power density (201.9 W g?1) and a large energy density (850.3 Wh kgZn?1), but also present robust cycling performance for 216 cycles with a high energy efficiency of 57.8%.  相似文献   

13.
The electrochemical CO2 reduction (ECDRR), as a key reaction in artificial photosynthesis to implement renewable energy conversion/storage, has been inhibited by the low efficiency and high costs of the electrocatalysts. Herein, we synthesize a fluorine‐doped carbon (FC) catalyst by pyrolyzing commercial BP 2000 with a fluorine source, enabling a highly selective CO2‐to‐CO conversion with a maximum Faradaic efficiency of 90 % at a low overpotential of 510 mV and a small Tafel slope of 81 mV dec?1, outcompeting current metal‐free catalysts. Moreover, the higher partial current density of CO and lower partial current density of H2 on FC relative to pristine carbon suggest an enhanced inherent activity towards ECDRR as well as a suppressed hydrogen evolution by fluorine doping. Fluorine doping activates the neighbor carbon atoms and facilitates the stabilization of the key intermediate COOH* on the fluorine‐doped carbon material, which are also blocked for competing hydrogen evolution, resulting in superior CO2‐to‐CO conversion.  相似文献   

14.
The reactions of the carbonate radical anion (CO3 . ?) with vitamin B12 derivatives were studied by pulse radiolysis. The carbonate radical anion directly oxidizes the metal center of cob(II)alamin quantitively to give hydroxycobalamin, with a bimolecular rate constant of 2.0×109 M ?1 s?1. The reaction of CO3 . ? with hydroxycobalamin proceeds in two steps. The second‐order rate constant for the first reaction is 4.3×108 M ?1 s?1. The rate of the second reaction is independent of the hydroxycobalamin concentration and is approximately 3.0×103 s?1. Evidence for formation of corrinoid complexes differing from cobalamin by the abstraction of two or four hydrogen atoms from the corrin macrocycle and lactone ring formation has been obtained by ultra‐high‐performance liquid chromatography/high‐resolution mass spectrometry (UHPLC/HRMS). A mechanism is proposed in which abstraction of a hydrogen atom by CO3 . ? from a carbon atom not involved in the π conjugation system of the corrin occurs in the first step, resulting in formation of a CoIII C‐centered radical that undergoes rapid intramolecular electron transfer to form the corresponding CoII carbocation complex for about 50 % of these complexes. Subsequent competing pathways lead to formation of corrinoid complexes with two fewer hydrogen atoms and lactone derivatives of B12. Our results demonstrate the potential of UHPLC combined with HRMS in the separation and identification of tetrapyrrole macrocycles with minor modifications from their parent molecule.  相似文献   

15.
Metal–organic frameworks (MOFs) and MOF‐derived nanomaterials have recently attracted great interest as highly efficient, non‐noble‐metal catalysts. In particular, two‐dimensional MOF nanosheet materials possess the advantages of both 2D layered nanomaterials and MOFs and are considered to be promising nanomaterials. Herein, we report a facile and scalable in situ hydrothermal synthesis of Co–hypoxanthine (HPA) MOF nanosheets, which were then directly carbonized to prepare uniform Co@N‐Carbon nanosheets for efficient bifunctional electrocatalytic hydrogen‐evolution reactions (HERs) and oxygen‐evolution reactions (OERs). The Co embedded in N‐doped carbon shows excellent and stable catalytic performance for bifunctional electrocatalytic OERs and HERs. For OERs, the overpotential of Co@N‐Carbon at 10 mA cm?2 was 400 mV (vs. reversible hydrogen electrode, RHE). The current density of Co@N‐Carbon reached 100 mA cm?2 at an overpotential of 560 mV, which showed much better performance than RuO2; the largest current density of RuO2 that could be reached was only 44 mA cm?2. The Tafel slope of Co@N‐Carbon was 61 mV dec?1, which is comparable to that of commercial RuO2 (58 mV dec?1). The excellent electrocatalytic properties can be attributed to the nanosheet structure and well‐dispersed carbon‐encapsulated Co, CoN nanoparticles, and N‐dopant sites, which provided high conductivity and a large number of accessible active sites. The results highlight the great potential of utilizing MOF nanosheet materials as promising templates for the preparation of 2D Co@N‐Carbon materials for electrocatalysis and will pave the way to the development of more efficient 2D nanomaterials for various catalytic applications.  相似文献   

16.
The electrochemical reduction reaction of carbon dioxide (CO2RR) to carbon monoxide (CO) is the basis for the further synthesis of more complex carbon‐based fuels or attractive feedstock. Single‐atom catalysts have unique electronic and geometric structures with respect to their bulk counterparts, thus exhibiting unexpected catalytic activities. A nitrogen‐anchored Zn single‐atom catalyst is presented for CO formation from CO2RR with high catalytic activity (onset overpotential down to 24 mV), high selectivity (Faradaic efficiency for CO (FECO) up to 95 % at ?0.43 V), remarkable durability (>75 h without decay of FECO), and large turnover frequency (TOF, up to 9969 h?1). Further experimental and DFT results indicate that the four‐nitrogen‐anchored Zn single atom (Zn‐N4) is the main active site for CO2RR with low free energy barrier for the formation of *COOH as the rate‐limiting step.  相似文献   

17.
The rational construction of covalent or noncovalent organic two‐dimensional nanosheets is a fascinating target because of their promising applications in electronics, membrane technology, catalysis, sensing, and energy technologies. Herein, a large‐area (square millimeters) and free‐standing 2D supramolecular polymer (2DSP) single‐layer sheet (0.7–0.9 nm in thickness), comprising triphenylene‐fused nickel bis(dithiolene) complexes has been readily prepared by using the Langmuir–Blodgett method. Such 2DSPs exhibit excellent electrocatalytic activities for hydrogen generation from water with a Tafel slope of 80.5 mV decade?1 and an overpotential of 333 mV at 10 mA cm?2, which are superior to that of recently reported carbon nanotube supported molecular catalysts and heteroatom‐doped graphene catalysts. This work is promising for the development of novel free‐standing organic 2D materials for energy technologies.  相似文献   

18.
A conceptually new all‐solid‐state asymmetric supercapacitor based on atomically thin sheets is presented which offers the opportunity to optimize supercapacitor properties on an atomic level. As a prototype, β‐Co(OH)2 single layers with five‐atoms layer thickness were synthesized through an oriented‐attachment strategy. The increased density‐of‐states and 100 % exposed hydrogen atoms endow the β‐Co(OH)2 single‐layers‐based electrode with a large capacitance of 2028 F g?1. The corresponding all‐solid‐state asymmetric supercapacitor achieves a high cell voltage of 1.8 V and an exceptional energy density of 98.9 Wh kg?1 at an ultrahigh power density of 17 981 W kg?1. Also, this integrated nanodevice exhibits excellent cyclability with 93.2 % capacitance retention after 10 000 cycles, holding great promise for constructing high‐energy storage nanodevices.  相似文献   

19.
In this work, for the first time, a cobalt carbonate hydroxide (Co(CO3)0.5(OH)?0.11 H2O) nanowire array on Ti mesh (CHNA/Ti) was applied to drive the dehydrogenation of alkaline NaBH4 solution for on‐demand hydrogen production. Compared with other nanostructured Co‐based catalyst systems, CHNA/Ti can be activated more quickly and separated easily from fuel solutions. This self‐supported cobalt salt nanowire array catalyst works as an efficient and robust 3D catalyst for the hydrolysis reaction of NaBH4 with a hydrogen generation rate of 4000 mL min?1 gCo?1 and a low apparent activation energy of 39.78 kJ mol?1 and offers an attractive system for on‐demand hydrogen generation.  相似文献   

20.
Herein, we report a nanoarchitectured nickel molybdate/carbon fibers@pre‐treated Ni foam (NiMoO4/CF@PNF) electrode for supercapacitors. The synthesis of NiMoO4/CF@PNF mainly consists of a direct chemical vapor deposition (CVD) growth of dense carbon fibers (CFs) onto pre‐treated Ni foam (PNF) as the substrate, followed by in situ growth of NiMoO4 nanosheets (NSs) on the CF@PNF substrate by means of a hydrothermal process. The NiMoO4/CF@PNF electrode exhibits a high areal capacitance (5.14 F cm?2 at 4 mA cm?2) and excellent cycling stability (97 % capacitance retention after 2000 cycles at 10 mA cm?2). Furthermore, we have successfully assembled NiMoO4 NSs//activated carbon (AC) asymmetric supercapacitors, which can achieve an energy density of 45.6 Wh kg?1 at 674 W kg?1, and excellent stability with 93 % capacitance retention after 2000 cycles at 5 mA cm?2. These superior properties hold great promise for energy‐storage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号