首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
A hexanuclear gold(I) selenido cluster and its sulfido counterpart, [Au6{μ‐Ph2PN(CH2o‐Py)PPh2}33‐E)2](ClO4)2 (E = S, Se), with bridging bis(diphenylphosphino)amine ligands were synthesized and characterized. The X‐ray crystal structure of the selenido cluster was determined, with the gold core possessing a distorted heterocubane structure. Intramolecular aurophilic interactions with short Au(I)?Au(I) contacts of around 3.09–3.13 Å were observed. The complexes were found to emit strongly in the solid state with orange to red emission colors. Their electronic absorption and emission properties were also investigated.  相似文献   

2.
Photolysis of [Me2SiSiMe2)[C5H4Fe(CO2)]2with a series of bis(phosphine)ligands Ph2P(CH2)n PPh2(n=1-4) leads to the formation of the corresponding diiron complexes with intramolecular and intermolecular bis(phosphine) substitution.When these complexes were heated in refluxing xylene.only in the complexes with intermolecular bis(phosphine )substitution the thermal rearrangement reaction occurred.  相似文献   

3.
A study regarding coordination chemistry of the bis(diphenylphosphino)amide ligand Ph2P‐N‐PPh2 at Group 4 metallocenes is presented herein. Coordination of N,N‐bis(diphenylphosphino)amine ( 1 ) to [(Cp2TiCl)2] (Cp=η5‐cyclopentadienyl) generated [Cp2Ti(Cl)P(Ph2)N(H)PPh2] ( 2 ). The heterometallacyclic complex [Cp2Ti(κ2P,P‐Ph2P‐N‐PPh2)] ( 3 Ti ) can be prepared by reaction of 2 with n‐butyllithium as well as from the reaction of the known titanocene–alkyne complex [Cp2Ti(η2‐Me3SiC2SiMe3)] with the amine 1 . Reactions of the lithium amide [(thf)3Li{N(PPh2)2}] with [Cp2MCl2] (M=Zr, Hf) yielded the corresponding zirconocene and hafnocene complexes [Cp2M(Cl){κ2N,P‐N(PPh2)2}] ( 4 Zr and 4 Hf ). Reduction of 4 Zr with magnesium gave the highly strained heterometallacycle [Cp2Zr(κ2P,P‐Ph2P‐N‐PPh2)] ( 3 Zr ). Complexes 2 , 3 Ti , 4 Hf , and 3 Zr were characterized by X‐ray crystallography. The structures and bondings of all complexes were investigated by DFT calculations.  相似文献   

4.
A novel palladium complex 4, cis‐dichloride(1,2‐bis(diphenylphosphino)vinyl‐P,P′,C)palladium(II)‐(bis(diphenylphosphino)methane‐P,P′)cobaltacarbonyl, was obtained and characterized from the treatment of [(μ‐Ph2PCH2PPh2)Co2(CO)4][(Ph2PC≡CPPh2)‐PdCl2] 3 with hydrochloric acid. The framework of 4 can be regarded as a grouping of two metal‐containing fragments: ‐Co(CO)2(dppm) and PdCl2(μ‐P,P‐Ph2PCH=C(‐)PPh2).  相似文献   

5.
Six new complexes of tin(IV) halides with phosphorus‐containing ligands have been fully characterized by single‐crystal X‐ray diffraction at low temperature. Three of the compounds, derived from the diphosphanes bis‐(diphenylphosphino)methane or bis‐(dicyclohexylphosphino)methane, have a novel zwitterionic structure, with five Cl ligands and one unidentate phosphorus‐containing ligand on tin, together with a proton on the second phosphorus atom of the potentially bidentate ligand; these are Cl5SnP(Ph2)CH2PPh2H+ ( 1 ), Cl5SnOP(Ph2)CH2‐PPh2H+ ( 2 ), and Cl5SnOP(cy2)CH2Pcy2H+ ( 3 ). The other three complexes have a bidentate donor attached to the SnX4 moiety; they comprise Cl4SnOP(Ph2)‐(CH2)2PPh2O ( 4 ), a derivative of bis‐(diphenylphosphino)ethane dioxide, I4SnOP(Ph2)CH2PPh2O ( 5 ), a similar derivative of bis‐(diphenylphosphino)‐methane dioxide, and the very unusual Br4SnAs‐(Ph2)(CH2)2PPh2O ( 6 ), with coordination to tin by As and O. Since the starting material for the last compound was Ph2As(CH2)2PPh2, this result illustrates well the more facile oxidation of P(III) than As(III). © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:136–143, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20525  相似文献   

6.
Reactions of SnCl2 with the complexes cis‐[PtCl2(P2)] (P2=dppf (1,1′‐bis(diphenylphosphino)ferrocene), dppp (1,3‐bis(diphenylphosphino)propane=1,1′‐(propane‐1,3‐diyl)bis[1,1‐diphenylphosphine]), dppb (1,4‐bis(diphenylphosphino)butane=1,1′‐(butane‐1,4‐diyl)bis[1,1‐diphenylphosphine]), and dpppe (1,5‐bis(diphenylphosphino)pentane=1,1′‐(pentane‐1,5‐diyl)bis[1,1‐diphenylphosphine])) resulted in the insertion of SnCl2 into the Pt? Cl bond to afford the cis‐[PtCl(SnCl3)(P2)] complexes. However, the reaction of the complexes cis‐[PtCl2(P2)] (P2=dppf, dppm (bis(diphenylphosphino)methane=1,1′‐methylenebis[1,1‐diphenylphosphine]), dppe (1,2‐bis(diphenylphosphino)ethane=1,1′‐(ethane‐1,2‐diyl)bis[1,1‐diphenylphosphine]), dppp, dppb, and dpppe; P=Ph3P and (MeO)3P) with SnX2 (X=Br or I) resulted in the halogen exchange to yield the complexes [PtX2(P2)]. In contrast, treatment of cis‐[PtBr2(dppm)] with SnBr2 resulted in the insertion of SnBr2 into the Pt? Br bond to form cis‐[Pt(SnBr3)2(dppm)], and this product was in equilibrium with the starting complex cis‐[PtBr2(dppm)]. Moreover, the reaction of cis‐[PtCl2(dppb)] with a mixture SnCl2/SnI2 in a 2 : 1 mol ratio resulted in the formation of cis‐[PtI2(dppb)] as a consequence of the selective halogen‐exchange reaction. 31P‐NMR Data for all complexes are reported, and a correlation between the chemical shifts and the coupling constants was established for mono‐ and bis(trichlorostannyl)platinum complexes. The effect of the alkane chain length of the ligand and SnII halide is described.  相似文献   

7.
The reaction of [CpRuCl(PPh3)2] (Cp=cyclopentadienyl) and [CpRuCl(dppe)] (dppe=Ph2PCH2CH2PPh2) with bis‐ and tris‐phosphine ligands 1,4‐(Ph2PC≡C)2C6H4 ( 1 ) and 1,3,5‐(Ph2PC≡C)3C6H3 ( 2 ), prepared by Ni‐catalysed cross‐coupling reactions between terminal alkynes and diphenylchlorophosphine, has been investigated. Using metal‐directed self‐assembly methodologies, two linear bimetallic complexes, [{CpRuCl(PPh3)}2(μ‐dppab)] ( 3 ) and [{CpRu(dppe)}2(μ‐dppab)](PF6)2 ( 4 ), and the mononuclear complex [CpRuCl(PPh3)(η1‐dppab)] ( 6 ), which contains a “dangling arm” ligand, were prepared (dppab=1,4‐bis[(diphenylphosphino)ethynyl]benzene). Moreover, by using the triphosphine 1,3,5‐tris[(diphenylphosphino)ethynyl]benzene (tppab), the trimetallic [{CpRuCl(PPh3)}33‐tppab)] ( 5 ) species was synthesised, which is the first example of a chiral‐at‐ruthenium complex containing three different stereogenic centres. Besides these open‐chain complexes, the neutral cyclic species [{CpRuCl(μ‐dppab)}2] ( 7 ) was also obtained under different experimental conditions. The coordination chemistry of such systems towards supramolecular assemblies was tested by reaction of the bimetallic precursor 3 with additional equivalents of ligand 2 . Two rigid macrocycles based on cis coordination of dppab to [CpRu(PPh3)] were obtained, that is, the dinuclear complex [{CpRu(PPh3)(μ‐dppab)}2](PF6)2 ( 8 ) and the tetranuclear square [{CpRu(PPh3)(μ‐dppab)}4](PF6)4 ( 9 ). The solid‐state structures of 7 and 8 have been determined by X‐ray diffraction analysis and show a different arrangement of the two parallel dppab ligands. All compounds were characterised by various methods including ESIMS, electrochemistry and by X‐band ESR spectroscopy in the case of the electrogenerated paramagnetic species.  相似文献   

8.
Planar nickel(II) complexes involving N‐(2‐Hydroxyethyl)‐N‐methyldithiocarbamate, such as [NiX(nmedtc)(PPh3)] (X = Cl, NCS; PPh3 = triphenylphosphine), and [Ni(nmedtc)(P‐P)]ClO4(P‐P = 1,1‐bis(diphenylphosphino)methane(dppm); 1,3‐bis(diphenylphosphino)propane (1,3‐dppp); 1,4‐bis(diphenylphosphino)butane(1,4‐dppb) have been synthesized. The complexes have been characterized by elemental analyses, IR and electronic spectroscopies. The increased νC–N value in all the complexes is due to the mesomeric drift of electrons from the dithiocarbamate ligands to the metal atom. Single crystal X‐ray structure of [Ni(nmedtc)(1,3‐dppp)]ClO4·H2O is reported. In the present 1,3‐dppp chelate, the P–Ni–P angle is higher than that found in 1,2‐bis(diphenylphosphino)ethane‐nickel chelates and lower than 1,4‐bis(diphenylphosphino)butane‐nickel chelates, as a result of presence of the flexible propyl back bone connecting the two phosphorus atoms of the complex.  相似文献   

9.
A facile preparative procedure was developed for the synthesis of 17-and 18-electron closo-(diphosphine)ruthenacarborane complexes. This method is based on the replacement of PPh3 ligands with bis(diphenylphosphino)alkanes Ph2P(CH2)nPPh2 (n = 2—4) in ruthenacarborane 3,3-(PPh3)2-3-Cl-3-H-closo-3,1,2-RuC2B9H11. The resulting complexes exhibit high activity in controlled radical polymerization of vinyl monomers.  相似文献   

10.
Synthesis, Structure, and Reactivity of η1‐ and η3‐Allyl Rhenium Carbonyls In (η3‐C3H5)Re(CO)4 one CO ligand can be substituted by PPh3, pyridine, isocyanide and benzonitrile. With 1,2‐bis(diphenylphosphino)ethylene, 1,1′‐bis(diphenylphosphino)ferrocene and 1,2‐bis(4‐pyridyl)ethane dinuclear ligand bridged complexes are obtained. The η3‐η1 conversion of the allyl ligand occurs on reaction of (η3‐C3H5)Re(CO)4 with the bidendate ligands 1,2‐bis(diphenylphosphino)ethane and 1,3‐bis(diphenylphosphino)propane and with 2,2′‐bipyridine (L–L) which gives the complexes (η1‐C3H5)Re(CO)3(L–L). By reaction of (η3‐C3H5)Re(CO)4 with bis(diphenylphosphino)methane the allyl group is protonated and under elemination of propene the complex (OC)3Re(Ph2PCHPPh2)(η1‐Ph2PCH2PPh2) ( 19 ) with a diphosphinomethanide ligand is formed. On heating solutions of (η3‐C3H5)Re(CO)4 and (η3‐C3H5)Re(CO)3(CN‐2,5‐Me2C6H3) ( 5 ) in methanol the methoxy bridged compounds Re4(CO)12(OH)(OMe)3 and Re2(CO)4(CN‐2,5‐Me2C6H3)4(μ‐OMe)2 ( 20 ) were isolated. The crystal structures of (η3‐C3H5)Re(CO)3(CNCH2SiMe3) ( 4 ), [(η3‐C3H5)(OC)3Re]2‐ (μ‐bis‐(diphenylphosphino)ferrocene) ( 8 ), (η1‐C3H5)Re(CO)3‐ (bpy) ( 14 ), of 19 , 20 and of (OC)3Re‐[Ph2P(CH2)3PPh2]Cl ( 16 ) were determined by X‐ray diffraction.  相似文献   

11.
A new series of cycloplatinated (II) complexes with general formulas of [Pt (bhq)(N3)(P)] [bhq = deprotonated 7,8‐benzo[h]quinoline, P = triphenyl phosphine (PPh3) and methyldiphenyl phosphine], [Pt (bhq)(P^P)]N3 [P^P = 1,1‐bis (diphenylphosphino)methane (dppm) and 1,2‐bis (diphenylphosphino)ethane] and [Pt2(bhq)2(μ‐P^P)(N3)2] [P^P = dppm and 1,2‐bis (diphenylphosphino)acetylene] is reported in this investigation. A combination of azide (N3?) and phosphine (monodentate and bidentate) was used as ancillary ligands to study their influences on the chromophoric cyclometalated ligand. All complexes were characterized by nuclear magnetic resonance spectroscopy. To confirm the presence of the N3? ligand directly connected to the platinum center, complex [Pt (bhq)(N3)(PPh3)] was further characterized by single‐crystal X‐ray crystallography. The photophysical properties of the new products were studied by UV–Vis spectroscopy in CH2Cl2 and photoluminescence spectroscopy in solid state (298 or 77 K) and in solution (77 K). Using density functional theory calculations, it was proved that, in addition to intraligand charge‐transfer (ILCT) and metal‐to‐ligand charge‐transfer (MLCT) transitions, the L′LCT (L′ = N3, L = C^N) electronic transition has a remarkable contribution in low energy bands of the absorption spectra (for complexes [Pt (bhq)(N3)(P)] and [Pt2(bhq)2(μ‐P^P)(N3)2]). It is indicative of the determining role of the N3? ligand in electronic transitions of these complexes, specifically in the low energy region. In this regard, the photoluminescence studies indicated that the emissions in such complexes originate from a mixed 3ILCT/3MLCT (intramolecular) and also from aggregations (intermolecular).  相似文献   

12.
Phosphine exchange of [RuIIBr(MeCOO)(PPh3)2(3‐RBzTh)] (3‐RBzTh=3‐benzylbenzothiazol‐2‐ylidene) with a series of diphosphines (bis(diphenylphosphino)methane (dppm), 1,2‐bis(diphenylphosphino)ethylene (dppv), 1,1′‐bis(diphenylphosphino)ferrocene (dppf), 1,4‐bis(diphenylphosphino)butane (dppb), and 1,3‐(diphenylphosphino)propane (dppp)) gave mononuclear and neutral octahedral complexes [RuBr(MeCOO)(η2‐P2)(3‐RBzTh)] (P2=dppm ( 2 ), dppv ( 3 ), dppf ( 4 ), dppb ( 5 ), or dppp ( 6 )), the coordination spheres of which contained four different ligands, namely, a chelating diphosphine, carboxylate, N,S‐heterocyclic carbene (NSHC), and a bromide. Two geometric isomers of 6 ( 6a and 6 b ) have been isolated. The structures of these products, which have been elucidated by single‐crystal X‐ray crystallography, show two structural types, I and II, depending on the relative dispositions of the ligands. Type I structures contain a carbenic carbon atom trans to the oxygen atom, whereas two phosphorus atoms are trans to bromine and oxygen atoms. The type II system comprises a carbene carbon atom trans to one of the phosphorus atoms, whereas the other phosphorus is trans to the oxygen atom, with the bromine trans to the remaining oxygen atom. Complexes 2 , 3 , 4 , and 6a belong to type I, whereas 5 and 6 b are of type II. The kinetic product 6 b eventually converts into 6a upon standing. These complexes are active towards catalytic reduction of para‐methyl acetophenone by 2‐propanol at 82 °C under 1 % catalyst load giving the corresponding alcohols. The dppm complex 2 shows the good yields (91–97 %) towards selected ketones.  相似文献   

13.
Reactions of pyrimidine‐2‐thione (HpymS) with PdII/PtIV salts in the presence of triphenyl phosphine and bis(diphenylphosphino)alkanes, Ph2P‐(CH2)m‐PPh2 (m = 1, 2) have yielded two types of complexes, viz. a) [M(η2‐N, S‐ pymS)(η1‐S‐ pymS)(PPh3)] (M = Pd, 1 ; Pt, 2 ), and (b) [M(η1‐S‐pymS)2(L‐L)] {L‐L, M = dppm (m = 1) Pd, 3 ; Pt, 4 ; dppe (m = 2), Pd, 5 ; Pt, 6 }. Complexes have been characterized by elemental analysis (C, H, N), NMR spectroscopy (1H, 13C, 31P), and single crystal X‐ray crystallography ( 1 , 2 , 4 , and 5 ). Complexes 1 and 2 have terminal η1‐S and chelating η2‐N, S‐modes of pymS, while other Pd/Pt complexes have only terminal η1‐S modes. The solution state 31P NMR spectral data reveal dynamic equilibrium for the complexes 3 , 5 and 6 , whereas the complexes 1 , 2 and 4 are static in solution state.  相似文献   

14.
The palladium(0)‐catalyzed polyaddition of bifunctional vinyloxiranes [1,4‐bis(2‐vinylepoxyethyl)benzene ( 1a ) and 1,4‐bis(1‐methyl‐2‐vinylepoxyethyl)benzene ( 1b )] with 1,3‐dicarbonyl compounds [methyl acetoacetate ( 4 ), dimethyl malonate ( 6 ), and Meldrum's acid ( 8 )] was investigated under various conditions. The polyaddition of 1 with 4 was carried out in tetrahydrofuran with phosphine ligands such as PPh3 and 1,2‐bis(diphenylphosphino)ethane (dppe). Polymers having hydroxy, ketone, and ester groups in the side groups ( 5 ) were obtained in good yields despite the kinds of ligands employed. The number‐average molecular weight value of 5b was higher than that of 5a . The polyaddition of 1b and 6 was affected by the kinds of ligands employed. The corresponding polymer 7b was not obtained when PPh3 and 1,2‐bis(diphenylphosphino)ferrocene were used. The polyaddition was carried out with dppe as the ligand and gave polymer 7b in a good yield. The molecular weight of the polymer obtained from 1b and 8 was much higher than those of polymers 5b and 7b . The polyaddition with Pd2(dba)3 · CHCl3/dppe as a catalyst (where dba is dibenzylideneacetone) produced polymer 9b in a 92% yield (number‐average molecular weight = 45,600). The stereochemistries of all the obtained polymers were confirmed as an E configuration by the coupling constant of the vinyl proton. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2487–2494, 2002  相似文献   

15.
The dinuclear AuI complex containing the 4,5‐bis(diphenylphosphino)‐9,9‐dimethylxanthene (xantphos) ligand and trifluoroacetate anions exists in a solvent‐free form, [μ‐4,5‐bis(diphenylphosphino)‐9,9‐dimethylxanthene]bis[(trifluoroacetato)gold(I)], [Au2(C2F3O2)2(C39H32OP2)], (I), and as a dichloromethane solvate, [Au2(C2F3O2)2(C39H32OP2)]·0.58CH2Cl2, (II). The trifluoroacetate anions are coordinated to the AuI centres bridged by the xantphos ligand in both compounds. The AuI atoms are in distorted linear coordination environments in both compounds. The phosphine substituents are in a syn arrangement in the xantphos ligand, which facilitates the formation of short aurophilic Au...Au interactions of 2.8966 (8) Å in (I) and 2.9439 (6) Å in (II).  相似文献   

16.
A study of the coordination chemistry of different bis(diphenylphosphino)methanide ligands [Ph2PC(X)PPh2] (X=H, SiMe3) with Group 4 metallocenes is presented. The paramagnetic complexes [Cp2Ti{κ2P,P‐Ph2PC(X)PPh2}] (X=H ( 3 a ), X=SiMe3 ( 3 b )) have been prepared by the reactions of [(Cp2TiCl)2] with [Li{C(X)PPh2}2(thf)3]. Complex 3 b could also be synthesized by reaction of the known titanocene alkyne complex [Cp2Ti(η2‐Me3SiC2SiMe3)] with Ph2PC(H)(SiMe3)PPh2 ( 2 b ). The heterometallacyclic complex [Cp2Zr(H){κ2P,P‐Ph2PC(H)PPh2}] ( 4 aH ) has been prepared by reaction of the Schwartz reagent with [Li{C(H)PPh2}2(thf)3]. Reactions of [Cp2HfCl2] with [Li{C(X)PPh2}2(thf)3] gave the highly strained corresponding metallacycles [Cp2M(Cl){κ2P,P‐Ph2PC(X)PPh2}] ( 5 aCl and 5 bCl ) in very good yields. Complexes 3 a , 4 aH , and 5 aCl have been characterized by X‐ray crystallography. Complex 3 a has also been characterized by EPR spectroscopy. The structure and bonding of the complexes has been investigated by DFT analysis. Reactions of complexes 4 aH , 5 aCl , and 5 bCl did not give the corresponding more unsaturated heterometallacyclobuta‐2,3‐dienes.  相似文献   

17.
Reactions of the intermediate W(CO)5THF, generated photochemically from W(CO)6 in THF, with Ph2P(CH2) n PPh2 [ = PP; n = 2 (dppe), 4 (dppb), 6 (dpph), 10 (dppd)] at room temperature in THF solutions gave exclusively bimetallic complexes of the (CO)5WPPW(CO)5 type. In addition, complexes bridged by diphosphine ligands of the (CO)4(pip)MPPM(pip)(CO)4 type (pip = piperidine; M = Mo, W) were prepared by stirring the (CO)4M(pip)2 complexes with bis(diphenylphosphino)alkanes in CH2Cl2 solution at ambient temperatures. These new bis(diphenylphosphino)alkane-bridged complexes were characterized by i.r., 1H- and 31P-n.m.r. spectroscopies, as well as by elemental analysis.  相似文献   

18.
The two dinuclear IrI complexes [Ir2(μ‐Cl)2 {(R)‐(S)‐PPF‐PPh2}2] ( 1 ; (R)‐(S)‐PPF‐PPh2=(S)‐1‐(diphenylphosphino)‐2‐[(R)‐1‐(diphenylphosphino)ethyl]ferrocene and [Ir2(μ‐Cl)2{(R)‐binap}2] ( 3 ; (R)‐binap=(R)‐[1,1′‐binaphthalene]‐2,2′‐diylbis[diphenylphosphine]) smoothly react with 4 equiv. of the lithium salt of aniline to afford the new bis(anilido)iridate(I) (=bis(benzenaminato)iridate(1‐)) complexes Li[Ir(NHPh)2{(R)‐(S)‐PPF‐PPh2}] ( 4 ) and Li[Ir(NHPh)2{(R)‐binap}] ( 5 ), respectively. The anionic complexes 4 and 5 react upon protonolysis to give the dinuclear aminato‐bridged derivatives [Ir2(μ‐NHPh)2{(R)‐(S)‐PPF‐PPh2}2] ( 6 ) and [Ir2(μ‐NHPh)2{(R)‐binap}2] ( 7 ), which were characterized by X‐ray crystallography. None of the new complexes 4 – 7 shows catalytic activity in the hydroamination of olefins.  相似文献   

19.
The reactions of thiophene‐2‐(N‐diphenylphosphino)methylamine, Ph2PNHCH2‐C4H3S, 1 and thiophene‐2‐[N,N‐bis(diphenylphosphino)methylamine], (Ph2P)2NCH2‐C4H3S, 2, with MCl2(cod) (M = Pd, Pt; cod = 1,5‐cyclooctadiene) or [Cu(CH3CN)4]PF6 yields the new complexes [M(Ph2PNHCH2‐C4H3S)2Cl2], M = Pd 1a, Pt 1b, [Cu(Ph2PNHCH2‐C4H3S)4]PF6, 1c, and [M(Ph2P)2NCH2‐C4H3S)Cl2], M = Pd 2a, Pt 2b, {Cu[(Ph2P)2NCH2‐C4H3S]2}PF6, 2c, respectively. The new compounds were isolated as analytically pure crystalline solids and characterized by 31P‐, 13C‐, 1H‐NMR and IR spectroscopy and elemental analysis. Furthermore, the solid‐state molecular structures of representative palladium and platinum complexes of bis(phosphine)amine, 2a and 2b, respectively, were determined using single crystal X‐ray diffraction analysis. The palladium complexes were tested as potential catalysts in the Heck and Suzuki cross‐coupling reactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Monomeric, five-coordinated bis(ethylxanthato)ZnII(phosphine) complexes [phosphine = PPh3, P(o-tolyl)3, P(CH2Ph)3] have been synthesized by addition of the phosphine ligand (1:1 molar ratio) to CH2Cl2 solutions of [Zn(S2COEt)2]. Bidentate ligands Ph2PCH2CH2PPh2 (dppe) and Ph2P(CH2)4PPh2 (dppb) reacted in a 1:2 molar ratio to form dinuclear phosphine-bridged complexes. The Zn—P bonds are very labile and are probably broken in solution. The characterization of all the compounds has been carried out by elemental analyses and spectroscopic methods (i.r. and n.m.r.). The structure of binuclear [(S2COEt)2Zn(-dppb)Zn(S2COEt)2], determined by X-ray crystallography, shows a distorted trigonal bipyramidal environment for the Zn atoms, formed by two chelating xanthate and a bridging dppb ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号