首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accuracy of boundary conditions for computational aeroacoustics is a well‐known challenge, due in part to the necessity of truncating the flow domain and replacing the analytical boundary conditions at infinity with numerical boundary conditions. In particular, the inflow boundary condition involving turbulent velocity or scalar fields is likely to introduce spurious waves into the domain, therefore degrading the flow behavior and deteriorating the physical acoustic waves. In this work, a method to generate low‐noise, divergence‐free, synthetic turbulence for inflow boundary conditions is proposed. It relies on the classical view of turbulence as a superposition of random eddies convected with the mean flow. Within the proposed model, the vector potential and the requirement that the individual eddies must satisfy the linearized momentum equations about the mean flow are used. The model is tested using isolated eddies convected through the inflow boundary and an experimental benchmark data for spatially decaying isotropic turbulence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
通过热流固耦合模拟分析得到了不同微通道结构热沉基底的温度场及微通道内速度场,研究了相同入流功率下不同单层微通道拓扑结构对中心有高热流密度热点芯片的散热能力。结果表明:相同入流功率(0.05W)下,不同结构的散热能力排序由高到低为Y分形、弯曲散射、直散射(双侧出流)、直螺旋、直散射(单侧出流)、圆螺旋、树状分形、直槽结构;采用中心入流可有效降低芯片中心热点附近的温度,对于中心入流的散射结构,采用对称出流结构可提升其流动传热性能;Y分形结构具有良好的流动传热特性,对于热源面和中心热点均具有良好的散热效果。  相似文献   

3.
Gravity currents are important physical phenomena which have direct implications in a wide range of physical situations including geophysical processes, air conditioning, and building fires where they are responsible for the transport of smoke and hot gases, particularly, along long corridors. Despite recent progress in the field, relatively little is known about the structure of gravity currents under conditions pertinent to building fires. In particular, the impact of heat transfer at boundaries is not well understood. The present investigation is an attempt to address this shortcoming by studying the turbulent structure of gravity currents under both adiabatic and isothermal boundary conditions. For this purpose, a series of experiments was conducted in a rectangular tank with turbulent underflows. Laser Doppler velocimetry was employed to quantify the velocity field and associated turbulence parameters. Experimental results indicated that the mean flow within the head region primarily consisted of an undiluted large single vortex which rapidly mixed with the ambient flow in the wake region. Flows with isothermal wall boundary conditions showed three-dimensional effects whereas those with adiabatic walls exhibited two-dimensional behaviour. Turbulence was found to be highly inhomogeneous and its distribution was governed by the location of large eddies. While all components of turbulence kinetic energy showed minima in the regions where velocity was maximum (i.e. low fluid shear), they reached their maximum in the shear layer at the upper boundary of the flow.  相似文献   

4.
This paper describes a combined experimental and numerical study of scalar transport in spatially developing, two-stream, turbulent mixing layers with velocity ratios of approximately 2:1. The experimental mixing layer was created by an S-shaped splitter plate mounted in a wind tunnel, and the concentration field was realized by releasing incense smoke into the high-speed side boundary layer above the splitter plate. Simultaneous measurements of the velocity and concentration fields were performed. A 12-sensor hot-wire probe was used to measure the velocity field and its gradients, while the concentration field was recorded with digital photographs of the laser-illuminated smoke. In parallel, a large-eddy simulation (LES) of the spatially developing mixing layer was carried out. Auxiliary turbulent boundary layer LES were used to provide high quality inflow boundary conditions for the velocity and concentration fields. By synchronizing the velocity and concentration measurements, concentration fluxes were also determined. Octant analysis based on the sign combinations of the velocity and concentration fuctuations was performed on the flux data to investigate the scalar transport processes. It was found that octants compatible with mean gradient transport of the scalar contribute most to the scalar fluxes. Conditional planar averages of scalar and momentum fluxes were obtained to determine their spatial distribution with respect to the organized roller and rib vortices of the mixing layer, and distinct patterns were observed. The simulation provided additional insight about the flow and scalar flux distribution topology. This topology was found to be partially compatible with simple models of roller and rib vortices that transport the scalar in a mean gradient sense.  相似文献   

5.
Experimental characterization of non-premixed turbulent jet propane flames   总被引:1,自引:0,他引:1  
This paper reports an experimental study conducted on turbulent jet propane flames aiming at further understanding of turbulent structure in non-premixed slow-chemistry combustion systems. Measurements of mean and fluctuating velocity and temperature fields, mean concentration of major chemical species, correlation between velocity and temperature fluctuations, and dissipation of temperature fluctuations are reported in a turbulent round jet non-premixed propane flame, Re=20 400 and 37 600, issuing vertically in still air. The experimental conditions were designed to provide a complete definition of the upstream boundary conditions in the measurement domain for the purpose of validating computational models. The measured data depicts useful flow field information for describing turbulent non-premixed slow-chemistry flames. Velocity–temperature correlation measurements show turbulent heat fluxes tended to be restricted to the mixing layer where large temperature gradients occurred. Observations of non-gradient diffusion of heat at x/D=10 were verified. Temperature fluctuation dissipation, χ, showed the highest values in the shear layer, where the variance of temperature fluctuations was maximum and combustion occurred. The isotropy between the temperature dissipation in the radial and tangential directions was confirmed. By contrast, the observed anisotropy between axial and radial directions of dissipation suggests the influence of large structures in the entrainment shear layer on the production of temperature fluctuations in the flame region. The value of the normalized scalar dissipation at the stoichiometric mixture fraction surface, χst, was calculated, and ranges between 2 and 4 s−1. The measured data were used to estimate the budgets in the balance equations for turbulent kinetic energy, Reynolds shear stresses, turbulent heat flux and temperature variance, quantifying the mechanisms involved in the generation of turbulence as well as in the transport of the temperature.  相似文献   

6.
The flow near the leading edge of a steady breaker has been studied experimentally using Bubble Image Velocimetry (BIV) with the aim of characterizing the dynamics of the large eddies responsible for air entrainment. It is well reported in the literature, and confirmed by our measurements of the instantaneous velocity field, that this flow shares some important features with the turbulent shear-layer formed between two parallel semi-infinite streams with different velocities. Namely, the formation of a periodic array of coherent vortices, the constant convective velocity of those vortices, the linear relation between their size and their downstream position and the self-similar structure of both mean velocity profiles and Reynolds shear stresses. Nonetheless, important differences exists between the dynamics of the large eddies in a steady breaker and those in a free shear-layer. Particularly, the convective velocity of these large structures is slower in a steady breaker and, consistent with this, their growth rates are larger. A physical interpretation of these differences is provided together with a discussion of their implications. To support our measurements and conclusions, we present a careful analysis of the accuracy of the BIV technique in turbulent flows with large bubbles.  相似文献   

7.
An experimental study was conducted to develop and characterize systematically a new turbulence generator system to yield large turbulent Reynolds numbers in a compact configuration. The effect of the geometric parameters of two families of high-blockage plates on the resulting turbulent flow field was systematically studied: one series of plates was characterized by the number and distribution of circular openings; a second series had non-circular opening(s) with different shapes, distribution and position of the opening(s). The plates were placed upstream of a contoured contraction and the near field at the centerline of the resulting turbulent free jet was characterized by hot-wire anemometry in terms of mean axial velocity, turbulence intensity, turbulence length scales and corresponding Reynolds numbers. The plate with a central, non-circular opening produced the best compromise of highest turbulence levels along with excellent uniformity in average velocity and turbulence intensity, as evidenced by scan in the transverse direction. It appears to be the most promising one. By comparison with more traditional approaches to turbulence generation, we increased the turbulent Reynolds numbers based on the integral length scale to values on the order of 1000, which was one of the design objectives. Other plate geometries also yielded intense turbulence, but, in some cases, exhibited spurious frequency peaks in their power spectrum. The turbulent generation approach is to be adapted to combustion studies to reproduce conditions typical of practical system in relatively small experimental set-ups that are well-suited for bench-top experiments.  相似文献   

8.
9.
The calculation of the mass flux/velocity gradient transfer function at a wall in the direction parallel to the wall and perpendicular to the mean flow direction, has been performed in linear conditions. This transfer function is relevant to the difference of the mass fluxes between two semicircular surfaces separated by an infinitely thin gap aligned with the flow direction.Electrochemical measurements in turbulent flow were performed with segmented electrodes having this geometry and devised by a photolithographic technique. The spectra of the velocity gradient fluctuations in the longitudinal and transverse directions were calculated and hence the turbulence intensities.  相似文献   

10.
Effects of embedded longitudinal vortices on heat transfer in film-cooled turbulent boundary layers at different blowing ratios are discussed. These results were obtained in boundary layers at free-stream velocities of 10 and 15 m/s. Film coolant was injected from a single row of holes at blowing ratios of 0.47–1.26. A single longitudinal vortex was induced upstream of the film-cooling holes using a half-delta wing attached to the wind tunnel floor. Heat transfer measurements were made downstream of injection using a constant heat flux surface with 126 thermocouples for surface temperature measurements. For all blowing ratios examined, the embedded vortices cause significant alterations to wall heat transfer and to film cooling distributions. Measurrments of mean temperatures and mean velocities in spanwise planes show that high wall heat transfer regions are associated with regions of high near-wall longitudinal velocity where very little film coolant is present. In addition to high heat transfer regions associated with the vortex downwash, there are also secondary heat transfer peaks. These secondary peaks develop due to shear layer mixing and interaction between the vortex and cooling jets and become higher in magnitude and more persistent with downstream distance as the blowing ratio increases from 0.47 to 1.26.  相似文献   

11.
A laser Doppler velocimeter and a resistance thermometer were used to study velocity and temperature statistics in a strongly heated turbulent two-dimensional channel flow, with the wall temperature up to 700 °C and a Reynolds number of 14,000. Normalized mean velocity and mean temperature profiles were not significantly affected by the wall heating. Turbulent intensities of temperature fluctuation were also insensitive to the heat flux. However, turbulent intensities of velocity fluctuation were suppressed in the region away from the wall, whereas those near the wall were not changed noticeably by the wall heating. This phenomenon was explained by the balance of three parameters: turbulent production, viscous dissipation and intermittency.  相似文献   

12.
The statistical properties of growing wind waves are known to obey certain self-similarity laws. One of these is expressed as the -power law relation between the significant wave-height and the significant wave period in nondimensional forms. Recent experiments on turbulence above and below laboratory wind waves indicate that both the air and the water layers have a structure which is similar to that of the turbulent boundary layer over a rough solid wall. The continuity of the momentum flux through the air and water boundary layers combined with the -power law of wind waves means that all the characteristic velocities related to the air-water boundary process are proportional to one another. Our laboratory experimental data on the several characteristic variables concerned support this picture. The state of local equilibrium as expressed by the -power law is thought to be brought about by the “breaking adjustment of the wind wave” which is required by the overall continuity of the velocity and the momentum flux across a thin surface layer. The above proportionality of the characteristic velocities provides a physical basis for the observed friction velocity scaling of the ocean mixed layer.  相似文献   

13.
In the previous experimental studies it was concluded that the turbulent jet noise is produced by large-scale motions in the mixing layer induced by turbulence intermittence. The burden of this numerical simulation is the validation of these conclusions. As a result of numerical calculations, the “instantaneous” flow patterns and the parameter distributions in the initial regions of turbulent jets are obtained. On the basis of this information the flow dynamics are investigated. In the jet flow there are observable slowly transforming low static pressure regions and zones of elevated static pressure. These regions are displaced at the convection velocity. The inflow induced by the low pressure in the mixing layer has streamlines entering into the low pressure zones and flowing around the elevated pressure zones. The motion of the zones of the static pressure varying along the flow produces velocity disturbances in the induced external flow. The succession of the transformations of the intermittence-induced static pressure disturbances into sound waves is determined. This transformation occurs in the regions occupied by the ejected air.  相似文献   

14.
在水平T型分支管道中,用压缩空气对平均粒径为0.5mm砂石进行气固两相流试验。试验结果表明,当压缩空气的流速大于33m/s时,T型分支接头处没有固相沉积,两个分支管路分配的流量几乎相同。当压缩空气的流速小于33m/s时,分支接头处出现沉积,并且沉积量和分支管路的流量分配与分支管路上阀门开度有关:开度相同时,分支接头两侧的固相沉积量和流量分配相同;开度不同时,阀门开度小的一侧分支接头处的沉积量少,其分配的流量也少。  相似文献   

15.
In order to determine the mean rate of product creation within the framework of the Turbulent Flame Closure (TFC) model of premixed combustion, the model is combined with a simple closure of turbulent scalar flux developed recently by the present authors based on the flamelet concept of turbulent burning. The model combination is assessed by numerically simulating statistically planar, one-dimensional, developing premixed flames that propagate in frozen turbulence. The mean rate of product creation yielded by the combined model decreases too slowly at the trailing edges of the studied flames, with the effect being more pronounced at longer flame-development times and larger ratios of rms turbulent velocity u′ to laminar flame speed S L . To resolve the problem, the above closure of turbulent scalar flux is modified and the combination of the modified closure and TFC model yields reasonable behaviour of the studied rate. In particular, simulations indicate an increase in the mean combustion progress variable associated with the maximum rate by u′/S L , in line with available DNS data. Finally, the modified closure of turbulent scalar flux is validated by computing conditioned velocities and turbulent scalar fluxes in six impinging-jet flames. The use of the TFC model for simulating such flames is advocated.  相似文献   

16.
Measurements of mean velocity components, mean flow direction, turbulent intensities and Reynolds shear stress were made with a split film probe of hot wire anemometer to investigate the flow field generated by two identical jets of air issuing from plane parallel nozzles in a common end wall and mixing with the ambient room air. Due to the sensitivity of the split film probe to the flow direction, the reverse flow in the converging region was detected by the split film probe and observed by flow visualization. The mean velocity approaches self-preservation in both the converging and the combined regions, while the turbulent intensities and Reynolds shear stress approach self-preservation in the combined region only. The trajectory of the maximum velocity is almost unchanged by variance of nozzle spacing in the converging region. The distance of the merging point from the nozzle exit increases linearly with nozzle spacing. The spread of the converging jet increases more rapidly than that of the combined jet.  相似文献   

17.
颗粒在大涡结构中的弥散   总被引:5,自引:0,他引:5  
王兵  张会强  王希麟 《力学学报》2005,37(1):105-109
气相采用大涡模拟方法,颗粒相采用轨道模型研究了三维后台阶气粒两相湍流流动的大尺度涡结构的瞬时演变过程以及颗粒的瞬时弥散规律.比较了不同入流速度的颗粒在大涡结构中的瞬时弥散特性,尤其研究了高速释放大颗粒的弥散特性.三维流动中大尺度涡结构具有明显的脱离、发展、合并和破碎过程.小颗粒的分布受大涡结构的控制,其空间的弥散过程与流体 大涡结构的空间发展相一致,但是由于三维流动中大涡边缘和中心区的压力差,颗粒在大尺度 涡的边缘出现密集.而大颗粒在流场中的分布受其惯性控制,对气相的涡结构不敏感.高速释放到流场中的大颗粒受惯性影响最大,保持在其原有动量方向上运动.  相似文献   

18.
An experimental setup has been created to allow measurements of the properties of the gas phase, the liquid phase and the mixture in a pressure-atomised spray of water, in terms of both mean quantities and Reynolds stresses. This setup involves laser Doppler velocimetry for determining the velocity of either the gas or liquid phase, according to the parameters used, such as seeding or no-seeding of the ambient air, laser source power, or photo-multiplier gains, droplet tracking velocimetry for determining the velocity and characteristic size of the droplets, and a single optical probe for determining the mean volume fraction of the liquid, from which the liquid mean mass fraction and the mean density of the mixture are inferred. The experimental conditions, in particular in terms of liquid and gas Weber numbers, were chosen in a range for which the liquid phase turbulent kinetic energy should be mainly responsible for the liquid-jet primary break-up, these flow conditions lying within the second wind-induced atomization regime. Results reported herein are more specifically focused on the region ranging from 400 nozzle diameters to 800 nozzle diameters, where the liquid core is disrupted. They provide new information about the formation and properties of such pressure-atomised sprays, in particular in terms of the role played by the Reynolds stresses resulting from the slip velocity between the liquid and the gas. The mean slip velocity is directly related to the turbulent flux of liquid. Such information will be used in the future to develop new turbulence models since very limited experimental information is so far available for these terms.  相似文献   

19.
The problem of heat transfer in industrial processes, heat exchangers, and combustion chambers is formulated for a case where flow inside the chamber consists of a periodic motion imposed on a fully developed turbulent flow. It is shown that the velocity pulsations induce harmonic oscillations in temperature, thus breaking the temperature field into a steady mean part and a harmonic part. The interaction between the velocity and temperature oscillations introduces an extra term into the energy equation which reflects the effect of pulsations in producing higher heat transfer rates. The analysis shows that when the mean temperature is fully developed with constant heat flux at the wall, there is no effect of the velocity pulsations on the total heat transfer rate along the chamber. For the case where the mean temperature profile is not fully developed, analytical solutions are obtained for asymptotic values of the pulsations frequency. The results show the temperature gradient and its dependence on the frequency. These results are used to evaluate the feasibility of pulsating the flow in a heat exchanger for obtaining higher rates of heat transfer.  相似文献   

20.
The flow around a trailing edge is computed with a new hybrid method designed to more clearly separate the effects of total and sub-grid turbulent stress-modelling on the time-averaged and instantaneous velocity fields, and in turn, mean momentum and kinetic energy balances. These two velocity fields independently define Reynolds averaged and sub-grid-scale viscosities, and distinct stresses, at the same location. In particular, resolved eddies can emerge, or sweep in and out of the Reynolds averaged near wall layer, without being dampened by higher levels of the viscosity in this RANS dominated layer. The two-field hybrid model, first tested on channel flows, gives accurate predictions of mean velocities and stresses for different Reynolds numbers and coarse meshes. For the trailing edge flow the results of the hybrid model are close to the reference fine LES for mean velocity and turbulent content, whereas the DES-SST on the same coarse mesh gives too early separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号