首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatiotemporal network dynamics is an emergent property of many complex systems that remains poorly understood. We suggest a new approach to its study based on the analysis of dynamical motifs-small subnetworks with periodic and chaotic dynamics. We simulate randomly connected neural networks and, with increasing density of connections, observe the transition from quiescence to periodic and chaotic dynamics. This transition is explained by the appearance of dynamical motifs in the structure of these networks. We also observe domination of periodic dynamics in simulations of spatially distributed networks with local connectivity and explain it by the absence of chaotic and the presence of periodic motifs in their structure.  相似文献   

2.
The observation and study of nonlinear dynamical systems has been gaining popularity over years in different fields. The intrinsic complexity of their dynamics defies many existing tools based on individual orbits, while the Koopman operator governs evolution of functions defined in phase space and is thus focused on ensembles of orbits, which provides an alternative approach to investigate global features of system dynamics prescribed by spectral properties of the operator. However, it is difficult to identify and represent the most relevant eigenfunctions in practice. Here, combined with the Koopman analysis, a neural network is designed to achieve the reconstruction and evolution of complex dynamical systems. By invoking the error minimization, a fundamental set of Koopman eigenfunctions are derived, which may reproduce the input dynamics through a nonlinear transformation provided by the neural network. The corresponding eigenvalues are also directly extracted by the specific evolutionary structure built in.  相似文献   

3.
In this paper, by applying Lasalle's invariance principle and some results about the trace of a matrix, we propose a method for estimating the topological structure of a discrete dynamical network based on the dynamical evolution of the network. The network concerned can be directed or undirected, weighted or unweighted, and the local dynamics of each node can be nonidentical. The connections among the nodes can be all unknown orpartially known. Finally, two examples, including a Hénon map and a central network, are illustrated to verify the theoretical results.  相似文献   

4.
5.
We study coupled dynamics on networks using symbolic dynamics. The symbolic dynamics is defined by dividing the state space into a small number of regions (typically 2), and considering the relative frequencies of the transitions between those regions. It turns out that the global qualitative properties of the coupled dynamics can be classified into three different phases based on the synchronization of the variables and the homogeneity of the symbolic dynamics. Of particular interest is the homogeneous unsynchronized phase, where the coupled dynamics is in a chaotic unsynchronized state, but exhibits qualitative similar symbolic dynamics at all the nodes in the network. We refer to this dynamical behavior as symbolic synchronization. In this phase, the local symbolic dynamics of any arbitrarily selected node reflects global properties of the coupled dynamics, such as qualitative behavior of the largest Lyapunov exponent and phase synchronization. This phase depends mainly on the network architecture, and only to a smaller extent on the local chaotic dynamical function. We present results for two model dynamics, iterations of the one-dimensional logistic map and the two-dimensional Henon map, as local dynamical function.  相似文献   

6.
From the structure of quantum dynamics for closed and open systems, we describe several general results about information flow between interacting systems, which can be expressed in diagrammatic form. Conditions on information flow (e.g., that no information is transferred from system A to system B) imply that the overall dynamical evolution has a particular structure. We also remark that one simple type of two-qubit interaction, the unitary CNOT gate, cannot be represented by local operations and a single simultaneous information exchange.  相似文献   

7.
We analyse the hysteresis enlargements of an optical bistable system involving three dynamical variables. We investigate, both experimentally and numerically, the local dynamics of the up- and down-switching process versus the sweeping frequency of the control parameter. In particular, we delineate the domain of validity of the scaling law predicted for one-dimensional systems. At high sweeping frequency, we show the appearance of another asymptotic scaling low in . Thereafter, we analyse the global evolution of the hysteresis loop induced by these processes. At low frequency, a scaling law is retrieved, whereas at high frequency, the dynamical behaviour is shown to strongly depend on the particular shape of the bistability curve. Received: 14 September 1998 / Received in final form: 15 February 1999  相似文献   

8.
Robust impulsive synchronization of complex delayed dynamical networks   总被引:1,自引:0,他引:1  
This Letter investigates robust impulsive synchronization of complex delayed dynamical networks with nonsymmetrical coupling from the view of dynamics and control. Based on impulsive control theory on delayed dynamical systems, some simple yet generic criteria for robust impulsive synchronization are established. It is shown that these criteria can provide a novel and effective control approach to synchronize an arbitrary given delayed dynamical network to a desired synchronization state. Comparing with existing results, the advantage of the control scheme is that synchronization state can be selected as a weighted average of all the states in the network for the purpose of practical control strategy. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed control methodology.  相似文献   

9.
We present a bifurcation theory of smooth stochastic dynamical systems that are governed by everywhere positive transition densities. The local dependence structure of the unique strictly stationary evolution of such a system can be expressed by the ratio of joint and marginal probability densities; this ‘dependence ratio’ is a geometric invariant of the system. By introducing an equivalence relation defined on these dependence ratios, we arrive at a bifurcation theory for which in the compact case, the set of stable, i.e. non-bifurcating, systems is open and dense. The theory is illustrated with some simple examples.  相似文献   

10.
We propose a solution to the problem of time for systems with a single global Hamiltonian constraint. Our solution stems from the observation that, for these theories, conventional gauge theory methods fail to capture the full classical dynamics of the system and must therefore be deemed inappropriate. We propose a new strategy for consistently quantizing systems with a relational notion of time that does capture the full classical dynamics of the system and allows for evolution parametrized by an equitable internal clock. This proposal contains the minimal temporal structure necessary to retain the ordering of events required to describe classical evolution. In the context of shape dynamics (an equivalent formulation of general relativity that is locally scale invariant and free of the local problem of time) our proposal can be shown to constitute a natural methodology for describing dynamical evolution in quantum gravity and to lead to a quantum theory analogous to the Dirac quantization of unimodular gravity.  相似文献   

11.
Spatiotemporal self-organization is found in a wide range of distributed dynamical systems. The coupling of the active elements in these systems may be local or global or within a network, and the interactions may be diffusive or nondiffusive in nature. The articles in this focus issue describe biological and chemical systems designed to exhibit spatiotemporal dynamics and the control of such dynamics through feedback methods.  相似文献   

12.
We study the effect of learning dynamics on network topology. A network of discrete dynamical systems is considered for this purpose and the coupling strengths are made to evolve according to a temporal learning rule that is based on the paradigm of spike-time-dependent plasticity. This incorporates necessary competition between different edges. The final network we obtain is robust and has a broad degree distribution.  相似文献   

13.
Exploration of coherence phenomena in ensembles of interacting dynamical systems has been in the centre of research in social, physical, biological and technological systems for decades. But, in most of the studies, either completely percolated time- and space-static networks or temporal connectivities disregarding the systems' own dynamics have been dealt with. In this work, we examine the correlation between structural and dynamical evolution in networks of interacting dynamical systems. We specifically demonstrate the scenario of convergence of a set of chaotic attractors into a single attractor as a result of sufficient interaction based on the closeness of their own states. We characterize this occurrence through different measures, and map the collective states in network parameters' space. We further validate our proposition while exposing the whole scenario for different chaotic systems, namely Lorenz and Rössler oscillators.  相似文献   

14.
The problem of preserving fidelity in numerical computation of nonlinear ordinary differential equations is studied in terms of preserving local differential structure and approximating global integration structure of the dynamical system. The ordinary differential equations are lifted to the corresponding partial differential equations in the framework of algebraic dynamics, and a new algorithm—algebraic dynamics algorithm is proposed based on the exact analytical solutions of the ordinary differential equations by the algebraic dynamics method. In the new algorithm, the time evolution of the ordinary differential system is described locally by the time translation operator and globally by the time evolution operator. The exact analytical piece-like solution of the ordinary differential equations is expressed in terms of Taylor series with a local convergent radius, and its finite order truncation leads to the new numerical algorithm with a controllable precision better than Runge Kutta Algorithm and Symplectic Geometric Algorithm.  相似文献   

15.
Xiaojia Li  Yanqing Hu  Ying Fan 《Physica A》2010,389(1):164-170
Many networks are proved to have community structures. On the basis of the fact that the dynamics on networks are intensively affected by the related topology, in this paper the dynamics of excitable systems on networks and a corresponding approach for detecting communities are discussed. Dynamical networks are formed by interacting neurons; each neuron is described using the FHN model. For noisy disturbance and appropriate coupling strength, neurons may oscillate coherently and their behavior is tightly related to the community structure. Synchronization between nodes is measured in terms of a correlation coefficient based on long time series. The correlation coefficient matrix can be used to project network topology onto a vector space. Then by the K-means cluster method, the communities can be detected. Experiments demonstrate that our algorithm is effective at discovering community structure in artificial networks and real networks, especially for directed networks. The results also provide us with a deep understanding of the relationship of function and structure for dynamical networks.  相似文献   

16.
We focus on the discontinuity of a neural network model with diluted and clipped synaptic connections (±l only). The exact evolution rule of the average firing rate becomes a discontinuous piece-wise nonlinear map when very simple functions of dynamical threshold are introduced into the network. Complex dynamics is observed.  相似文献   

17.
杨锦涛  曹俊鹏  杨文力 《中国物理 B》2022,31(1):10314-010314
We study the non-Markovian dynamics of an open quantum system with machine learning.The observable physical quantities and their evolutions are generated by using the neural network.After the pre-training is completed,we fix the weights in the subsequent processes thus do not need the further gradient feedback.We find that the dynamical properties of physical quantities obtained by the dynamical learning are better than those obtained by the learning of Hamiltonian and time evolution operator.The dynamical learning can be applied to other quantum many-body systems,non-equilibrium statistics and random processes.  相似文献   

18.
Links in a realistic network may have different functions, which makes the network virtually a combination of some small-size functional subnetworks. Here, by a model of coupled phase oscillators, we investigate how such functional subnetworks are evolved and developed according to the network structure and dynamics. In particular, we study the case of evolutionary clustered networks in which the function type of each link (attractive or repulsive coupling) is adaptively updated according to the local network dynamics. It is found that during the process of system evolution, the network is gradually stabilized into a particular form in which the attractive (repulsive) subnetwork consists only of the intralinks (interlinks). Based on the observed properties of subnetwork evolution, we also propose a new algorithm for network partition which, compared with the conventional algorithms, is distinguished by its convenient operation and fast computing speed.  相似文献   

19.
A running sandpile is shown to undergo a dynamical transition as diffusion is increased from zero. The transition takes place after the local diffusion has become so large as to erase the local inhomogeneities, caused by the intermittent rain of sand, before they can trigger avalanche activity. The system then undergoes an abrupt change with the self-similar structure of the dynamics being replaced with quasiperiodic, near system-size transport events. These results may have significant implications for many of the driven physical systems for which self-organized criticality based dynamical models have been proposed.  相似文献   

20.
Main aim of this topical issue is to report recent advances in noisy nonequilibrium processes useful to describe the dynamics of ecological systems and to address the mechanisms of spatio-temporal pattern formation in ecology both from the experimental and theoretical points of view. This is in order to understand the dynamical behaviour of ecological complex systems through the interplay between nonlinearity, noise, random and periodic environmental interactions. Discovering the microscopic rules and the local interactions which lead to the emergence of specific global patterns or global dynamical behaviour and the noise’s role in the nonlinear dynamics is an important, key aspect to understand and then to model ecological complex systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号